
IMAGE ESTIMATION BY EXAMPLE

Geophysical Soundings Image Construction

(Madagascar version)

Jon F. Claerbout

c© November 18, 2008

Contents

1 Basic operators and adjoints 1

1.0.1 Programming linear operators . 3

1.1 FAMILIAR OPERATORS . 4

1.1.1 Adjoint derivative . 5

1.1.2 Transient convolution . 7

1.1.3 Internal convolution . 9

1.1.4 Zero padding is the transpose of truncation 10

1.1.5 Adjoints of products are reverse-ordered products of adjoints 11

1.1.6 Nearest-neighbor coordinates . 11

1.1.7 Data-push binning . 12

1.1.8 Linear interpolation . 13

1.1.9 Spray and sum : scatter and gather 15

1.1.10 Causal and leaky integration . 16

1.1.11 Backsolving, polynomial division and deconvolution 18

1.1.12 The basic low-cut filter . 19

1.1.13 Nearest-neighbor normal moveout (NMO) 22

1.1.14 Coding chains and arrays . 23

1.2 ADJOINT DEFINED: DOT-PRODUCT TEST 26

1.2.1 Definition of a vector space . 26

1.2.2 Dot-product test for validity of an adjoint 27

1.2.3 The word “adjoint” . 29

1.2.4 Matrix versus operator . 29

1.2.5 Inverse operator . 30

1.2.6 Automatic adjoints . 31

CONTENTS

2 Model fitting by least squares 33

2.1 HOW TO DIVIDE NOISY SIGNALS . 33

2.1.1 Dividing by zero smoothly . 33

2.1.2 Damped solution . 34

2.1.3 Smoothing the denominator spectrum 35

2.1.4 Imaging . 38

2.1.5 Formal path to the low-cut filter . 38

2.2 MULTIVARIATE LEAST SQUARES . 39

2.2.1 Inside an abstract vector . 39

2.2.2 Normal equations . 41

2.2.3 Differentiation by a complex vector 42

2.2.4 From the frequency domain to the time domain 42

2.3 KRYLOV SUBSPACE ITERATIVE METHODS 44

2.3.1 Sign convention . 44

2.3.2 Method of random directions and steepest descent 45

2.3.3 Null space and iterative methods . 47

2.3.4 Why steepest descent is so slow . 48

2.3.5 Conjugate direction . 48

2.3.6 Routine for one step of conjugate-direction descent 50

2.3.7 A basic solver program . 50

2.3.8 Test case: solving some simultaneous equations 52

2.4 INVERSE NMO STACK . 54

2.5 THE WORLD OF CONJUGATE GRADIENTS 56

2.5.1 Physical nonlinearity . 56

2.5.2 Statistical nonlinearity . 56

2.5.3 Coding nonlinear fitting problems 57

2.5.4 Standard methods . 57

2.5.5 Understanding CG magic and advanced methods 58

2.6 REFERENCES . 61

3 Empty bins and inverse interpolation 63

3.1 MISSING DATA IN ONE DIMENSION . 64

CONTENTS

3.1.1 Missing-data program . 67

3.2 WELLS NOT MATCHING THE SEISMIC MAP 71

3.3 SEARCHING THE SEA OF GALILEE . 77

3.4 INVERSE LINEAR INTERPOLATION . 80

3.4.1 Abandoned theory for matching wells and seismograms 82

3.5 PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION 83

4 The helical coordinate 85

4.1 FILTERING ON A HELIX . 85

4.1.1 Review of 1-D recursive filters . 86

4.1.2 Multidimensional deconvolution breakthrough 87

4.1.3 Examples of simple 2-D recursive filters 88

4.1.4 Coding multidimensional de/convolution 90

4.1.5 Causality in two-dimensions . 92

4.2 FINITE DIFFERENCES ON A HELIX . 94

4.2.1 Matrix view of the helix . 98

4.3 CAUSALITY AND SPECTAL FACTORIZATION 99

4.3.1 The spectral factorization concept 99

4.3.2 Cholesky decomposition . 101

4.3.3 Toeplitz methods . 101

4.3.4 Kolmogoroff spectral factorization 102

4.4 WILSON-BURG SPECTRAL FACTORIZATION 102

4.4.1 Wilson-Burg theory . 102

4.5 HELIX LOW-CUT FILTER . 105

4.6 THE MULTIDIMENSIONAL HELIX . 108

4.7 SUBSCRIPTING A MULTIDIMENSIONAL HELIX 109

5 Preconditioning 117

5.1 PRECONDITIONED DATA FITTING . 117

5.1.1 Preconditioner with a starting guess 118

5.2 PRECONDITIONING THE REGULARIZATION 118

5.2.1 The second miracle of conjugate gradients 119

5.2.2 Importance of scaling . 120

CONTENTS

5.2.3 Statistical interpretation . 121

5.2.4 The preconditioned solver . 121

5.3 OPPORTUNITIES FOR SMART DIRECTIONS 122

5.4 NULL SPACE AND INTERVAL VELOCITY 122

5.4.1 Balancing good data with bad . 123

5.4.2 Lateral variations . 125

5.4.3 Blocky models . 125

5.5 INVERSE LINEAR INTERPOLATION . 126

5.6 EMPTY BINS AND PRECONDITIONING 128

5.6.1 SEABEAM: Filling the empty bins with a laplacian 129

5.6.2 Three codes for inverse masking . 130

5.7 THEORY OF UNDERDETERMINED LEAST-SQUARES 132

5.8 SCALING THE ADJOINT . 134

5.9 A FORMAL DEFINITION FOR ADJOINTS 136

6 Multidimensional autoregression 137

6.0.1 Time domain versus frequency domain 137

6.1 SOURCE WAVEFORM, MULTIPLE REFLECTIONS 138

6.2 TIME-SERIES AUTOREGRESSION . 139

6.3 PREDICTION-ERROR FILTER OUTPUT IS WHITE 141

6.3.1 PEF whiteness proof in 1-D . 143

6.3.2 Simple dip filters . 144

6.3.3 PEF whiteness proof in 2-D . 145

6.3.4 Examples of modeling and deconvolving with a 2-D PEF 147

6.3.5 Seismic field data examples . 148

6.4 PEF ESTIMATION WITH MISSING DATA 155

6.4.1 Internal boundaries to multidimensional convolution 156

6.4.2 Finding the prediction-error filter . 160

6.5 TWO-STAGE LINEAR LEAST SQUARES 160

6.5.1 Adding noise (Geostat) . 161

6.5.2 Inversions with geostat . 163

6.5.3 Infill of 3-D seismic data from a quarry blast 166

CONTENTS

6.5.4 Imposing prior knowledge of symmetry 166

6.5.5 Hexagonal coordinates . 167

6.6 BOTH MISSING DATA AND UNKNOWN FILTER 168

6.6.1 Objections to interpolation error . 169

6.6.2 Packing both missing data and filter into a vector 170

6.7 LEVELED INVERSE INTERPOLATION 172

6.7.1 Test results for leveled inverse interpolation 172

6.7.2 Analysis for leveled inverse interpolation 173

6.7.3 Seabeam: theory to practice . 174

6.7.4 Risky ways to do nonlinear optimization 175

6.7.5 The bane of PEF estimation . 175

6.8 MULTIVARIATE SPECTRUM . 175

6.8.1 What should we optimize? . 177

6.8.2 Confusing terminology for data covariance 178

6.8.3 Hermeneutics . 178

7 Spatial aliasing and scale invariance 181

7.1 INTERPOLATION BEYOND ALIASING 181

7.1.1 Interlacing a filter . 182

7.2 MULTISCALE, SELF-SIMILAR FITTING 183

7.2.1 Examples of scale-invariant filtering 185

7.2.2 Scale-invariance introduces more fitting equations 186

7.2.3 Coding the multiscale filter operator 186

7.3 References . 188

8 Nonstationarity: patching 193

8.1 PATCHING TECHNOLOGY . 194

8.1.1 Weighting and reconstructing . 196

8.1.2 2-D filtering in patches . 198

8.1.3 Designing a separate filter for each patch 200

8.1.4 Triangular patches . 200

8.2 STEEP-DIP DECON . 202

8.2.1 Dip rejecting known-velocity waves 202

CONTENTS

8.2.2 Tests of steep-dip decon on field data 203

8.2.3 Are field arrays really needed? . 206

8.2.4 Which coefficients are really needed? 206

8.3 INVERSION AND NOISE REMOVAL . 207

8.4 SIGNAL-NOISE DECOMPOSITION BY DIP 207

8.4.1 Signal/noise decomposition examples 209

8.4.2 Spitz for variable covariances . 210

8.4.3 Noise removal on Shearer’s data . 211

8.4.4 The human eye as a dip filter . 212

8.5 SPACE-VARIABLE DECONVOLUTION 214

9 Plane waves in three dimensions 221

9.1 THE LEVELER: A VOLUME OR TWO PLANES? 221

9.1.1 PEFs overcome spatial aliasing of difference operators 223

9.1.2 My view of the world . 224

9.2 WAVE INTERFERENCE AND TRACE SCALING 224

9.2.1 Computing the proper scale factor for a seismogram 225

9.3 LOCAL MONOPLANE ANNIHILATOR 226

9.3.1 Mono-plane deconvolution . 227

9.3.2 Monoplanes in local windows . 227

9.3.3 Crossing dips . 227

9.3.4 Tests of 2-D LOMOPLAN on field data 229

9.4 GRADIENT ALONG THE BEDDING PLANE 230

9.4.1 Definition of LOMOPLAN in 3-D 231

9.4.2 The quarterdome 3-D synthetic (qdome) 231

9.5 3-D SPECTRAL FACTORIZATION . 232

10 Some research examples 235

10.1 GULF OF MEXICO CUBE . 235

CONTENTS i

ii CONTENTS

Preface

The difference between theory and practice is smaller in theory than it is in
practice. –folklore

We make discoveries about reality by examining the discrepancy between theory and
practice. There is a well-developed theory about the difference between theory and practice,
and it is called “geophysical inverse theory”. In this book we investigate the practice of the
difference between theory and practice. As the folklore tells us, there is a big difference.
There are already many books on the theory, and often as not, they end in only one or
a few applications in the author’s specialty. In this book on practice, we examine data
and results from many diverse applications. I have adopted the discipline of suppressing
theoretical curiosities until I find data that requires it (except for a few concepts at chapter
ends).

Books on geophysical inverse theory tend to address theoretical topics that are little
used in practice. Foremost is probability theory. In practice, probabilities are neither
observed nor derived from observations. For more than a handful of variables, it would not
be practical to display joint probabilities, even if we had them. If you are data poor, you
might turn to probabilities. If you are data rich, you have far too many more rewarding
things to do. When you estimate a few values, you ask about their standard deviations.
When you have an image making machine, you turn the knobs and make new images (and
invent new knobs). Another theory not needed here is singular-value decomposition.

In writing a book on the “practice of the difference between theory and practice” there is
no worry to be bogged down in the details of diverse specializations because the geophysical
world has many interesting data sets that are easily analyzed with elementary physics and
simple geometry. (My specialization, reflection seismic imaging, has a great many less
easily explained applications too.) We find here many applications that have a great deal in
common with one another, and that commonality is not a part of common inverse theory.
Many applications draw our attention to the importance of two weighting functions (one
required for data space and the other for model space). Solutions depend strongly on these
weighting functions (eigenvalues do too!). Where do these functions come from, from what
rationale or estimation procedure? We’ll see many examples here, and find that these
functions are not merely weights but filters. Even deeper, they are generally a combination
of weights and filters. We do some tricky bookkeeping and bootstrapping when we filter
the multidimensional neighborhood of missing and/or suspicious data.

Are you aged 23? If so, this book is designed for you. Life has its discontinuities: when
you enter school at age 5, when you marry, when you leave university, when you retire.

iii

iv CONTENTS

The discontinuity at age 23, mid graduate school, is when the world loses interest in your
potential to learn. Instead the world wants to know what you are accomplishing right now!
This book is about how to make images. It is theory and programs that you can use right
now.

This book is not devoid of theory and abstraction. Indeed it makes an important new
contribution to the theory (and practice) of data analysis: multidimensional autoregression
via the helical coordinate system.

The biggest chore in the study of “the practice of the difference between theory and
practice” is that we must look at algorithms. Some of them are short and sweet, but
other important algorithms are complicated and ugly in any language. This book can be
printed without the computer programs and their surrounding paragraphs, or you can read
it without them. I suggest, however, you take a few moments to try to read each program.
If you can write in any computer language, you should be able to read these programs well
enough to grasp the concept of each, to understand what goes in and what should come
out. I have chosen the computer language (more on this later) that I believe is best suited
for our journey through the “elementary” examples in geophysical image estimation.

Besides the tutorial value of the programs, if you can read them, you will know exactly
how the many interesting illustrations in this book were computed so you will be well
equipped to move forward in your own direction.

THANKS

2004 is my twelfth year of working on this book and much of it comes from earlier work and
the experience of four previous books. In this book, as in my previous books, I owe a great
deal to the many students at the Stanford Exploration Project. I would like to mention
some with particularly notable contributions (in approximate historical order).

The concept of this book began along with the PhD thesis of Jeff Thorson. Before that,
we imagers thought of our field as “an hoc collection of good ideas” instead of as “adjoints
of forward problems”. Bill Harlan understood most of the preconditioning issues long before
I did. All of us have a longstanding debt to Rick Ottolini who built a cube movie program
long before anyone else in the industry had such a blessing.

My first book was built with a typewriter and ancient technologies. In early days each
illustration would be prepared without reusing packaged code. In assembling my second
book I found I needed to develop common threads and code them only once and make
this code systematic and if not idiot proof, then “idiot resistant”. My early attempts to
introduce “seplib” were not widely welcomed until Stew Levin rebuilt everything making it
much more robust. My second book was typed in the troff text language. I am indebted
to Kamal Al-Yahya who not only converted that book to LATEX, but who wrote a general-
purpose conversion program that became used internationally.

Early days were a total chaos of plot languages. I and all the others at SEP are deeply
indebted to Joe Dellinger who starting from work of Dave Hale, produced our internal
plot language “vplot” which gave us reproducibiliy and continuity over decades. Now, for
example, our plots seamlessly may be directed to postscript (and PDF), Xwindow, or the
web. My second book required that illustrations be literally taped onto the sheet containing

CONTENTS v

the words. All of us benefitted immensely from the work of Steve Cole who converted Joe’s
vplot language to postscript which was automatically integrated with the text.

When I began my third book I was adapting liberally from earlier work. I began to
realize the importance of being able to reproduce any earlier calculation and began building
rules and file-naming conventions for “reproducible research”. This would have been im-
possible were it not for Dave Nichols who introduced cake, a variant of the UNIX software
building program make. Martin Karrenbach continued the construction of our invention
of “reproducible research” and extended it to producing reproducible research reports on
CD-ROM, an idea well ahead of its time. Some projects were fantastic for their time but
had the misfortune of not being widely adopted, ultimately becoming unsupportable. In
this catagory was Dave and Martin’s implementation xtex, a magnificent way of embedding
reproducible research in an electronic textbook. When cake suffered the same fate as xtex,
Matthias Schwab saved us from mainstream isolation by bringing our build procedures into
the popular GNU world.

Coming to the present textbook I mention Bob Clapp. He made numerous contributions.
When Fortran77 was replaced by Fortran90, he rewrote Ratfor. For many years I (and many
of us) depended on Ratfor as our interface to Fortran and as a way of presenting uncluttered
code. Bob rewrote Ratfor from scratch merging it with other SEP-specific software tools
(Sat) making Ratfor90. Bob prepared the interval-velocity examples in this book. Bob
also developed most of the “geostat” ideas and examples in this book. Morgan Brown
introduced the texture examples that we find so charming. Paul Sava totally revised the
book’s presentation of least-squares solvers making them more palatable to students and
making more honest our claim that in each case the results you see were produced by the
code you see.

One name needs to be singled out. Sergey Fomel converted all the examples in this
book from my original Fortran 77 to a much needed modern style of Fortran 90. After I
discovered the helix idea and its wide-ranging utility, he adapted all the relevant examples
in this book to use it. If you read Fomel’s programs, you can learn effective application of
that 1990’s revolution in coding style known as “object orientation.”

This electronic book, “Geophysical Exploration by Example,” is free software; you can redis-
tribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This book is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have received a copy
of the GNU General Public License along with this program; if not, write to the Free Software
Foundation, Inc., 675 Massachusetts Ave., Cambridge, MA 02139, USA.

Jon Claerbout
April 27, 2004

vi CONTENTS

Chapter 1

Basic operators and adjoints

A great many of the calculations we do in science and engineering are really matrix mul-
tiplication in disguise. The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how the adjoint operator (matrix transpose) back projects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or
make images) from the data. Logically, the adjoint is the first step and a part of all subse-
quent steps in this inversion process. Surprisingly, in practice the adjoint sometimes does
a better job than the inverse! This is because the adjoint operator tolerates imperfections
in the data and does not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship
between operators in general and their adjoints, you can obtain the adjoint just as soon as
you have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

1

2 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate
truncate zero pad
replicate, scatter, spray sum or stack
spray into neighborhoods sum within bins
derivative (slope) negative derivative
causal integration anticausal integration
add functions do integrals
assignment statements added terms
plane-wave superposition slant stack / beam form
superpose curves sum along a curve
stretch squeeze
scalar field gradient negative of vector field divergence
upward continue downward continue
diffraction modeling imaging by migration
hyperbola modeling CDP stacking
ray tracing tomography

The left column above is often called “modeling,” and the adjoint operators on the
right are often used in “data processing.”

When the adjoint operator is not an adequate approximation to the inverse, then you
apply the techniques of fitting and optimization explained in Chapter 2. These techniques
require iterative use of the modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection” operator because
information propagated in one direction (earth to data) is projected backward (data to
earth model). Using complex-valued operators, the transpose and complex conjugate go
together; and in Fourier analysis, taking the complex conjugate of exp(iωt) reverses the
sense of time. With more poetic license, I say that adjoint operators undo the time and
phase shifts of modeling operators. The inverse operator does this too, but it also divides
out the color. For example, when linear interpolation is done, then high frequencies are
smoothed out, so inverse interpolation must restore them. You can imagine the possibilities
for noise amplification. That is why adjoints are safer than inverses. But nature determines
in each application what is the best operator to use, and whether to stop after the adjoint,
to go the whole way to the inverse, or to stop partway.

The operators and adjoints above transform vectors to other vectors. They also trans-
form data planes to model planes, volumes, etc. A mathematical operator transforms an
“abstract vector” which might be packed full of volumes of information like television sig-
nals (time series) can pack together a movie, a sequence of frames. We can always think of
the operator as being a matrix but the matrix can be truly huge (and nearly empty). When
the vectors transformed by the matrices are large like geophysical data set sizes then the
matrix sizes are “large squared,” far too big for computers. Thus although we can always
think of an operator as a matrix, in practice, we handle an operator differently. Each prac-
tical application requires the practitioner to prepare two computer programs. One performs
the matrix multiply y = Ax and another multiplys by the transpose x̃ = A′y (without
ever having the matrix itself in memory). It is always easy to transpose a matrix. It is
less easy to take a computer program that does y = Ax and convert it to another to do
x̃ = A′y. In this chapter are many examples of increasing complexity. At the end of the

3

chapter we will see a test for any program pair to see whether the operators A and A′

are mutually adjoint as they should be. Doing the job correctly (coding adjoints without
making approximations) will reward us later when we tackle model and image estimation
problems.

1.0.1 Programming linear operators

The operation yi =
∑

j bijxj is the multiplication of a matrix B by a vector x. The
adjoint operation is x̃j =

∑
i bijyi. The operation adjoint to multiplication by a matrix is

multiplication by the transposed matrix (unless the matrix has complex elements, in which
case we need the complex-conjugated transpose). The following pseudocode does matrix
multiplication y = Bx and multiplication by the transpose x̃ = B′y:

if adjoint
then erase x

if operator itself
then erase y

do iy = 1, ny {
do ix = 1, nx {

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

}}

Notice that the “bottom line” in the program is that x and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the adjoint and the operator itself.

Next we restate the matrix-multiply pseudo code in real code.

The module matmult for matrix multiply and its adjoint exhibits the style that we will
use repeatedly. At last count there were 53 such routines (operator with adjoint) in this
book alone.

We have a module with two entries, one named init for the physical scientist who
defines the physical problem by defining the matrix, and another named lop for the least-
squares problem solver, the computer scientist who will not be interested in how we specify
B, but who will be iteratively computing Bx and B′y to optimize the model fitting.

To use matmult, two calls must be made, the first one

matmult_init(bb);

is done by the physical scientist after he or she has prepared the matrix. Most later calls
will be done by numerical analysts in solving code like in Chapter 2. These calls look like

matmult_lop(adj, add, nx, ny, x, y);

4 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

user/fomels/matmult.c

33 void matmult lop (bool adj , bool add ,
34 int nx , int ny , f loat ∗ x , f loat ∗y)
35 /∗< l i n e a r opera tor >∗/
36 {
37 int ix , i y ;
38 s f a d j n u l l (adj , add , nx , ny , x , y) ;
39 for (i x = 0 ; ix < nx ; i x++) {
40 for (i y = 0 ; iy < ny ; i y++) {
41 i f (adj) x [i x] += B[iy] [i x] ∗ y [i y] ;
42 else y [i y] += B[iy] [i x] ∗ x [i x] ;
43 }
44 }
45 }

where adj is the logical variable saying whether we desire the adjoint or the operator itself,
and where add is a logical variable saying whether we want to accumulate like y← y +Bx
or whether we want to erase first and thus do y← Bx.

We split operators into two independent processes, the first is used for geophysical set up
while the second is invoked by mathematical library code (introduced in the next chapter)
to find the model that best fits the data. Here is why we do so. It is important that the
math code contain nothing about the geophysical particulars. This enables us to use the
same math code on many different geophysical problems. This concept of “information
hiding” arrived late in human understanding of what is desireable in a computer language.
Subroutines and functions are the way that new programs use old ones. Object modules are
the way that old programs (math solvers) are able to use new ones (geophysical operators).

1.1 FAMILIAR OPERATORS

The simplest and most fundamental linear operators arise when a matrix operator reduces
to a simple row or a column.

A row is a summation operation.

A column is an impulse response.

If the inner loop of a matrix multiply ranges within a

row, the operator is called sum or pull.

column, the operator is called spray or push.

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column

1.1. FAMILIAR OPERATORS 5

matrix operator. For example, the row operator [a, b]

y = [a b]
[

x1

x2

]
= ax1 + bx2 (1.1)

has an adjoint that is two assignments:[
x̂1

x̂2

]
=

[
a
b

]
y (1.2)

The adjoint of a sum of N terms is a collection of N assignments.

1.1.1 Adjoint derivative

In numerical analysis we represent the derivative a time function by a finite difference. We
do this by subtracting each two neighboring time points and then dividing by the sample
interval ∆t. This amounts to convolution with the filter (1,−1)/∆t. Omitting the ∆t we
express this concept as:

y1

y2

y3

y4

y5

y6

 =

−1 1
. −1 1 . . .
. . −1 1 . .
. . . −1 1 .
. . . . −1 1
. 0

x1

x2

x3

x4

x5

x6

 (1.3)

The filter impulse response is seen in any column in the middle of the matrix, namely
(1,−1). In the transposed matrix, the filter-impulse response is time-reversed to (−1, 1).
So, mathematically, we can say that the adjoint of the time derivative operation is the
negative time derivative. This corresponds also to the fact that the complex conjugate of
−iω is iω. We can also speak of the adjoint of the boundary conditions: we might say that
the adjoint of “no boundary condition” is a “specified value” boundary condition. The last
row in equation (1.3) is optional. It may seem unnatural to append a null row, but it can
be a small convenience (when plotting) to have the input and output be the same size.

Equation (1.3) is implemented by the code in module igrad1 which does the operator
itself (the forward operator) and its adjoint.

The adjoint code may seem strange. It might seem more natural to code the adjoint to be
the negative of the operator itself and then make the special adjustments for the boundaries.
The code given, however, is correct and requires no adjustments at the ends. To see why,
notice for each value of i, the operator itself handles one row of equation (1.3) while for
each i the adjoint handles one column. That’s why coding the adjoint in this way does not
require any special work on the ends. The present method of coding reminds us that the
adjoint of a sum of N terms is a collection of N assignments.

Figure 1.1 illustrates the use of module igrad1 for each north-south line of a topographic
map. We observe that the gradient gives an impression of illumination from a low sun angle.

6 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Figure 1.1: Topography near Stanford (top) southward slope (bottom).
ajt/igrad1 stangrad

1.1. FAMILIAR OPERATORS 7

filt/lib/igrad1.c

25 void s f i g r a d 1 l o p (bool adj , bool add ,
26 int nx , int ny , f loat ∗xx , f loat ∗yy)
27 /∗< l i n e a r opera tor >∗/
28 {
29 int i ;
30

31 s f a d j n u l l (adj , add , nx , ny , xx , yy) ;
32 for (i =0; i < nx−1; i++) {
33 i f (adj) {
34 xx [i +1] += yy [i] ;
35 xx [i] −= yy [i] ;
36 } else {
37 yy [i] += xx [i +1] − xx [i] ;
38 }
39 }
40 }

To apply igrad1 along the 1-axis for each point on the 2-axis of a two-dimensional map,
we use the loop

for (iy=0; iy < ny; iy++)
igrad1_lop(adj, add, nx, nx, map[iy], ruf[iy])

1.1.2 Transient convolution

The next operator we examine is convolution. It arises in many applications; and it could
be derived in many ways. A basic derivation is from the multiplication of two polynomials,
say X(Z) = x1 +x2Z +x3Z

2 +x4Z
3 +x5Z

4 +x6Z
5 times B(Z) = b1 + b2Z + b3Z

2 + b4Z
3.1

Identifying the k-th power of Z in the product Y (Z) = B(Z)X(Z) gives the k-th row of
the convolution transformation (1.4).

y =

y1

y2

y3

y4

y5

y6

y7

y8

=

b1 0 0 0 0 0
b2 b1 0 0 0 0
b3 b2 b1 0 0 0
0 b3 b2 b1 0 0
0 0 b3 b2 b1 0
0 0 0 b3 b2 b1

0 0 0 0 b3 b2

0 0 0 0 0 b3

x1

x2

x3

x4

x5

x6

 = Bx (1.4)

Notice that columns of equation (1.4) all contain the same signal, but with different shifts.
This signal is called the filter’s impulse response.

1 This book is more involved with matrices than with Fourier analysis. If it were more Fourier analysis
we would choose notation to begin subscripts from zero like this: B(Z) = b0 + b1Z + b2Z

2 + b3Z
3.

8 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Equation (1.4) could be rewritten as

y =

y1

y2

y3

y4

y5

y6

y7

y8

=

x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

0 x6 x5

0 0 x6

 b1

b2

b3

 = Xb (1.5)

In applications we can choose between y = Xb and y = Bx. In one case the output y is
dual to the filter b, and in the other case the output y is dual to the input x. Sometimes we
must solve for b and sometimes for x; so sometimes we use equation (1.5) and sometimes
(1.4). Such solutions begin from the adjoints. The adjoint of (1.4) is

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

 =

b1 b2 b3 0 0 0 0 0
0 b1 b2 b3 0 0 0 0
0 0 b1 b2 b3 0 0 0
0 0 0 b1 b2 b3 0 0
0 0 0 0 b1 b2 b3 0
0 0 0 0 0 b1 b2 b3

y1

y2

y3

y4

y5

y6

y7

y8

(1.6)

The adjoint crosscorrelates with the filter instead of convolving with it (because the filter
is backwards). Notice that each row in equation (1.6) contains all the filter coefficients and
there are no rows where the filter somehow uses zero values off the ends of the data as
we saw earlier. In some applications it is important not to assume zero values beyond the
interval where inputs are given.

The adjoint of (1.5) crosscorrelates a fixed portion of filter input across a variable portion
of filter output.

 b̂1

b̂2

b̂3

 =

 x1 x2 x3 x4 x5 x6 0 0
0 x1 x2 x3 x4 x5 x6 0
0 0 x1 x2 x3 x4 x5 x6

y1

y2

y3

y4

y5

y6

y7

y8

(1.7)

Module tcai1 is used for y = Bx and module tcaf1 is used for y = Xb.

The polynomials X(Z), B(Z), and Y (Z) are called Z transforms. An important fact
in real life (but not important here) is that the Z transforms are Fourier transforms in
disguise. Each polynomial is a sum of terms and the sum amounts to a Fourier sum when
we take Z = eiω∆t. The very expression Y (Z) = B(Z)X(Z) says that a product in the
frequency domain (Z has a numerical value) is a convolution in the time domain (that’s
how we multipy polynomials, convolve their coefficients).

1.1. FAMILIAR OPERATORS 9

user/gee/tcai1.c

45 for (b=0; b < nb ; b++) {
46 for (x=0; x < nx ; x++) { y = x + b ;
47 i f (adj) xx [x] += yy [y] ∗ bb [b] ;
48 else yy [y] += xx [x] ∗ bb [b] ;
49 }
50 }

user/gee/tcaf1.c

45 for (b=0; b < nb ; b++) {
46 for (x=0; x < nx ; x++) { y = x + b ;
47 i f (adj) bb [b] += yy [y] ∗ xx [x] ;
48 else yy [y] += bb [b] ∗ xx [x] ;
49 }
50 }

1.1.3 Internal convolution

Convolution is the computational equivalent of ordinary linear differential operators (with
constant coefficients). Applications are vast, and end effects are important. Another choice
of data handling at ends is that zero data not be assumed beyond the interval where the
data is given. This is important in data where the crosscorrelation changes with time. Then
it is sometimes handled as constant in short time windows. Care must be taken that zero
signal values not be presumed off the ends of those short time windows; otherwise, the many
ends of the many short segments can overwhelm the results.

In the sets (1.4) and (1.5), the top two equations explicitly assume that the input data
vanishes before the interval on which it is given, and likewise at the bottom. Abandoning
the top two and bottom two equations in (1.5) we get:

y3

y4

y5

y6

 =

x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

 b1

b2

b3

 (1.8)

The adjoint is b̂1

b̂2

b̂3

 =

 x3 x4 x5 x6

x2 x3 x4 x5

x1 x2 x3 x4

y3

y4

y5

y6

 (1.9)

The difference between (1.9) and (1.7) is that here the adjoint crosscorrelates a fixed portion
of output across a variable portion of input, whereas with (1.7) the adjoint crosscorrelates
a fixed portion of input across a variable portion of output.

In practice we typically allocate equal space for input and output. Because the output is
shorter than the input, it could slide around in its allocated space, so its location is specified

10 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

by an additional parameter called its lag. The value of lag always used in this book is

user/gee/icaf1.c

45 for (b=0; b < nb ; b++) {
46 for (y = nb ; y <= ny ; y++) { x = y − b − 1 ;
47 i f (adj) bb [b] += yy [y−l ag] ∗ xx [x] ;
48 else yy [y−l ag] += bb [b] ∗ xx [x] ;
49 }
50 }

lag=1. For lag=1 the module icaf1 implements not equation (1.8) but (1.10):

y1

y2

y3

y4

y5

y6

 =

0 0 0
0 0 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

 b1

b2

b3

 (1.10)

It may seem a little odd to put the required zeros at the beginning of the output, but filters
are generally designed so that their strongest coefficient is the first, namely bb(1) so the
alignment of input and output in equation (1.10) is the most common one.

The end effects of the convolution modules are summarized in Figure 5.6.

Figure 1.2: Example of convolution
end-effects. From top to bottom: in-
put; filter; output of tcai1(); out-
put of icaf1() also with (lag=1).
ajt/conv conv

1.1.4 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended
data (truncation). Let us see why this is so. Set a signal in a vector x, and then to make
a longer vector y, add some zeros at the end of x. This zero padding can be regarded as
the matrix multiplication

y =
[

I
0

]
x (1.11)

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (1.12)

1.1. FAMILIAR OPERATORS 11

So the transpose operation to zero padding data is simply truncating the data back to its
original length. Module zpad1 below pads zeros on both ends of its input. Modules for two-
and three-dimensional padding are in the library named zpad2() and zpad3().

user/gee/zpad1.c

27 for (d=0; d < nd ; d++) {
28 p = d + (np−nd) /2 ;
29 i f (adj) data [d] += padd [p] ;
30 else padd [p] += data [d] ;
31 }

1.1.5 Adjoints of products are reverse-ordered products of adjoints

Here we examine an example of the general idea that adjoints of products are reverse-
ordered products of adjoints. For this example we use the Fourier transformation. No
details of Fourier transformation are given here and we merely use it as an example of
a square matrix F. We denote the complex-conjugate transpose (or adjoint) matrix with
a prime, i.e., F′. The adjoint arises naturally whenever we consider energy. The statement
that Fourier transforms conserve energy is y′y = x′x where y = Fx. Substituting gives
F′ F = I, which shows that the inverse matrix to Fourier transform happens to be the
complex conjugate of the transpose of F.

With Fourier transforms, zero padding and truncation are especially prevalent. Most
modules transform a dataset of length of 2n, whereas dataset lengths are often of length
m×100. The practical approach is therefore to pad given data with zeros. Padding followed
by Fourier transformation F can be expressed in matrix algebra as

Program = F
[

I
0

]
(1.13)

According to matrix algebra, the transpose of a product, say AB = C, is the product
C′ = B′A′ in reverse order. So the adjoint routine is given by

Program′ =
[

I 0
]

F′ (1.14)

Thus the adjoint routine truncates the data after the inverse Fourier transform. This con-
crete example illustrates that common sense often represents the mathematical abstraction
that adjoints of products are reverse-ordered products of adjoints. It is also nice to see a
formal mathematical notation for a practical necessity. Making an approximation need not
lead to collapse of all precise analysis.

1.1.6 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uniform
mesh or we record data on a uniform mesh. Typically we have a function f of time t or
depth z and we represent it by f(iz) corresponding to f(zi) for i = 1, 2, 3, . . . , nz where

12 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

zi = z0 + (i − 1)∆z. We sometimes need to handle depth as an integer counting variable
i and we sometimes need to handle it as a floating-point variable z. Conversion from the
counting variable to the floating-point variable is exact and is often seen in a computer
idiom such as either of

for (iz=0; iz < nz; nz++) { z = z0 + iz * dz;
for (i3=0, i3 < n3; i3++) { x3 = o3 + i3 * d3;

The reverse conversion from the floating-point variable to the counting variable is inexact.
The easiest thing is to place it at the nearest neighbor. This is done by solving for iz, then
adding one half, and then rounding down to the nearest integer. The familiar computer
idioms are:

iz = 0.5 + (z - z0) / dz;
i3 = 0.5 + (x3 - o3) / d3;

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with
the C function floor().

1.1.7 Data-push binning

Binning is putting data values in bins. Nearest-neighbor binning is an operator. There
is both a forward operator and its adjoint. Normally the model consists of values given
on a uniform mesh, and the data consists of pairs of numbers (ordinates at coordinates)
sprinkled around in the continuum (although sometimes the data is uniformly spaced and
the model is not).

In both the forward and the adjoint operation, each data coordinate is examined and
the nearest mesh point (the bin) is found. For the forward operator, the value of the bin
is added to that of the data. The adjoint is the reverse: we add the value of the data
to that of the bin. Both are shown in two dimensions in module bin2. The most typical

user/gee/bin2.c

46 for (id =0; id < nd ; id++) {
47 i 1 = 0 .5 + (xy [0] [id]−o1)/d1 ;
48 i 2 = 0 .5 + (xy [1] [id]−o2)/d2 ;
49 i f (0<=i1 && i1<m1 &&
50 0<=i2 && i2<m2) {
51 im = i1+i2 ∗m1;
52 i f (adj) mm[im] += dd [id] ;
53 else dd [id] += mm[im] ;
54 }
55 }

application requires an additional step, inversion. In the inversion applications each bin

1.1. FAMILIAR OPERATORS 13

contains a different number of data values. After the adjoint operation is performed, the
inverse operator divides the bin value by the number of points in the bin. It is this inversion
operator that is generally called binning. To find the number of data points in a bin, we
can simply apply the adjoint of bin2 to pseudo data of all ones. To capture this idea in
an equation, let B denote the linear operator in which the bin value is sprayed to the data
values. The inverse operation, in which the data values in the bin are summed and divided
by the number in the bin, is represented by

m = diag(B′1)−1B′d (1.15)

Empty bins, of course, leave us a problem. That we’ll address in chapter 3. In Figure 1.3,
the empty bins contain zero values.

Figure 1.3: Binned depths of the Sea of Galilee. ajt/galilee galbin

1.1.8 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier.
When we perform the forward operation, we take each data coordinate and see which two
model bin centers bracket it. Then we pick up the two bracketing model values and weight
each of them in proportion to their nearness to the data coordinate, and add them to get
the data value (ordinate). The adjoint operation is adding a data value back into the model
vector; using the same two weights, the adjoint distributes the data ordinate value between
the two nearest bins in the model vector. For example, suppose we have a data point near

14 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

each end of the model and a third data point exactly in the middle. Then for a model space
6 points long, as shown in Figure 1.4, we have the operator in (1.16).

Figure 1.4: Uniformly sampled
model space and irregularly sampled
data space corresponding to (1.16).
ajt/XFig helgerud

d
 1

d
 2

m
 5

m
 4

m
 3

m
 2

m
 1

m
 0

d
 0

 d0

d1

d2

 ≈

 .7 .3
. . 1 . . .
.5 .5

m0

m1

m2

m3

m4

m5

 (1.16)

The two weights in each row sum to unity. If a binning operator were used for the same
data and model, the binning operator would contain a “1.” in each row. In one dimension
(as here), data coordinates are often sorted into sequence, so that the matrix is crudely
a diagonal matrix like equation (1.16). If the data coordinates covered the model space
uniformly, the adjoint would roughly be the inverse. Otherwise, when data values pile up
in some places and gaps remain elsewhere, the adjoint would be far from the inverse.

Module lint1 does linear interpolation and its adjoint. In chapters 3 and 6 we build
inverse operators.

user/gee/lint1.c

45 for (id =0; id < nd ; id++) {
46 f = (coord [id]−o1)/d1 ;
47 im=f l o o r f (f) ;
48 i f (0 <= im && im < nm−1) {
49 fx=f−im ;
50 gx=1.− fx ;
51

52 i f (adj) {
53 mm[im] += gx ∗ dd [id] ;
54 mm[im+1] += fx ∗ dd [id] ;
55 } else {
56 dd [id] += gx ∗ mm[im] + fx ∗ mm[im+1] ;
57 }
58 }
59 }

1.1. FAMILIAR OPERATORS 15

1.1.9 Spray and sum : scatter and gather

Perhaps the most common operation is the summing of many values to get one value. Its
adjoint operation takes a single input value and throws it out to a space of many values.
The summation operator is a row vector of ones. Its adjoint is a column vector of
ones. In one dimension this operator is almost too easy for us to bother showing a routine.
But it is more interesting in three dimensions, where we could be summing or spraying
on any of three subscripts, or even summing on some and spraying on others. In module
spraysum, both input and output are taken to be three-dimensional arrays. Externally,
however, either could be a scalar, vector, plane, or cube. For example, the internal array
xx(n1,1,n3) could be externally the matrix map(n1,n3). When module spraysum is given
the input dimensions and output dimensions stated below, the operations stated alongside
are implied.

(n1,n2,n3) (1,1,1) Sum a cube into a value.
(1,1,1) (n1,n2,n3) Spray a value into a cube.
(n1,1,1) (n1,n2,1) Spray a column into a matrix.
(1,n2,1) (n1,n2,1) Spray a row into a matrix.
(n1,n2,1) (n1,n2,n3) Spray a plane into a cube.
(n1,n2,1) (n1,1,1) Sum rows of a matrix into a column.
(n1,n2,1) (1,n2,1) Sum columns of a matrix into a row.
(n1,n2,n3) (n1,n2,n3) Copy and add the whole cube.

If an axis is not of unit length on either input or output, then both lengths must be the
same; otherwise, there is an error. Normally, after (possibly) erasing the output, we simply
loop over all points on each axis, adding the input to the output. This implements either
a copy or an add, depending on the add parameter. It is either a spray, a sum, or a copy,
according to the specified axis lengths.

user/gee/spraysum.c

42 for (i 3 =0; i 3 < SF MAX(n3 ,m3) ; i 3++) {
43 x = SF MIN(i3 , n3−1);
44 y = SF MIN(i3 ,m3−1);
45 for (i 2 =0; i 2 < SF MAX(n2 ,m2) ; i 2++) {
46 x = x∗n2 + SF MIN(i2 , n2−1);
47 y = y∗m2 + SF MIN(i2 ,m2−1);
48 for (i 1 =0; i 1 < SF MAX(n1 ,m1) ; i 1++) {
49 x = x∗n1 + SF MIN(i1 , n1−1);
50 y = y∗m1 + SF MIN(i1 ,m1−1);
51

52 i f (adj) xx [x] += yy [y] ;
53 else yy [y] += xx [x] ;
54 }
55 }
56 }

16 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

1.1.10 Causal and leaky integration

Causal integration is defined as

y(t) =
∫ t

−∞
x(τ) dτ (1.17)

Leaky integration is defined as

y(t) =
∫ ∞

0
x(t− τ) e−ατ dτ (1.18)

As α → 0, leaky integration becomes causal integration. The word “leaky” comes from
electrical circuit theory where the voltage on a capacitor would be the integral of the current
if the capacitor did not leak electrons.

Sampling the time axis gives a matrix equation that we should call causal summation,
but we often call it causal integration. Equation (1.19) represents causal integration for
ρ = 1 and leaky integration for 0 < ρ < 1.

y =

y0

y1

y2

y3

y4

y5

y6

=

1 0 0 0 0 0 0
ρ 1 0 0 0 0 0
ρ2 ρ 1 0 0 0 0
ρ3 ρ2 ρ 1 0 0 0
ρ4 ρ3 ρ2 ρ 1 0 0
ρ5 ρ4 ρ3 ρ2 ρ 1 0
ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1

x0

x1

x2

x3

x4

x5

x6

= Cx (1.19)

(The discrete world is related to the continuous by ρ = e−α∆τ and in some applications,
the diagonal is 1/2 instead of 1.) Causal integration is the simplest prototype of a recursive
operator. The coding is trickier than that for the operators we considered earlier. Notice
when you compute y5 that it is the sum of 6 terms, but that this sum is more quickly
computed as y5 = ρy4 + x5. Thus equation (1.19) is more efficiently thought of as the
recursion

yt = ρ yt−1 + xt t increasing (1.20)

(which may also be regarded as a numerical representation of the differential equation
dy/dt + y(1− ρ)/∆t = x(t).)

When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (1.19) than of (1.20). Let the matrix of equation (1.19) be called C. Transposing to
get C′ and applying it to y gives us something back in the space of x, namely x̃ = C′y.
From it we see that the adjoint calculation, if done recursively, needs to be done backwards,
as in

x̃t−1 = ρx̃t + yt−1 t decreasing (1.21)

Thus the adjoint of causal integration is anticausal integration.

A module to do these jobs is leakint. The code for anticausal integration is not obvious
from the code for integration and the adjoint coding tricks we learned earlier. To understand

1.1. FAMILIAR OPERATORS 17

filt/lib/causint.c

35 t = 0 . ;
36 i f (adj) {
37 for (i=nx−1; i >= 0 ; i−−) {
38 t += yy [i] ;
39 xx [i] += t ;
40 }
41 } else {
42 for (i =0; i <= nx−1; i++) {
43 t += xx [i] ;
44 yy [i] += t ;
45 }
46 }

Figure 1.5: in1 is an input pulse. C
in1 is its causal integral. C’ in1 is
the anticausal integral of the pulse.
in2 is a separated doublet. Its causal
integration is a box and its anti-
causal integration is a negative box.
CC in2 is the double causal integral
of in2. How can an equilateral trian-
gle be built? ajt/causint causint

18 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

the adjoint, you need to inspect the detailed form of the expression x̃ = C′y and take care
to get the ends correct. Figure 1.5 illustrates the program for ρ = 1.

Later we will consider equations to march wavefields up towards the earth’s surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth’s
surface and march down, a layer at a time, into the earth.

EXERCISES:

1 Consider the matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 ρ 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

(1.22)

and others like it with ρ in other locations. Show what combination of these matrices
will represent the leaky integration matrix in equation (1.19). What is the adjoint?

2 Modify the calculation in Figure 1.5 so that there is a triangle waveform on the bottom
row.

3 Notice that the triangle waveform is not time aligned with the input in2. Force time
alignment with the operator C′C or CC′.

4 Modify causint on page 17 by changing the diagonal to contain 1/2 instead of 1. Notice
how time alignment changes in Figure 1.5.

1.1.11 Backsolving, polynomial division and deconvolution

Ordinary differential equations often lead us to the backsolving operator. For example, the
damped harmonic oscillator leads to a special case of equation (1.23) where (a3, a4, · · ·) = 0.
There is a huge literature on finite-difference solutions of ordinary differential equations that
lead to equations of this type. Rather than derive such an equation on the basis of many
possible physical arrangements, we can begin from the filter transformation B in (1.4) but
put the matrix on the other side of the equation so our transformation can be called one
of inversion or backsubstitution. Let us also force the matrix B to be a square matrix by
truncating it with T = [I 0], say A = [I 0]B = TB. To link up with applications in
later chapters, I specialize to 1’s on the main diagonal and insert some bands of zeros.

Ay =

1 0 0 0 0 0 0
a1 1 0 0 0 0 0
a2 a1 1 0 0 0 0
0 a2 a1 1 0 0 0
0 0 a2 a1 1 0 0
a5 0 0 a2 a1 1 0
0 a5 0 0 a2 a1 1

y0

y1

y2

y3

y4

y5

y6

=

x0

x1

x2

x3

x4

x5

x6

= x (1.23)

1.1. FAMILIAR OPERATORS 19

Algebraically, this operator goes under the various names, “backsolving”, “polynomial divi-
sion”, and “deconvolution”. The leaky integration transformation (1.19) is a simple example
of backsolving when a1 = −ρ and a2 = a5 = 0. To confirm this, you need to verify that the
matrices in (1.23) and (1.19) are mutually inverse.

A typical row in equation (1.23) says

xt = yt +
∑
τ>0

aτ yt−τ (1.24)

Change the signs of all terms in equation (1.24) and move some terms to the opposite side

yt = xt −
∑
τ>0

aτ yt−τ (1.25)

Equation (1.25) is a recursion to find yt from the values of y at earlier times.

In the same way that equation (1.4) can be interpreted as Y (Z) = B(Z)X(Z), equation
(1.23) can be interpreted as A(Z)Y (Z) = X(Z) which amounts to Y (Z) = X(Z)/A(Z).
Thus, convolution is amounts to polynomial multiplication while the backsubstitution we
are doing here is called deconvolution, and it amounts to polynomial division.

A causal operator is one that uses its present and past inputs to make its current output.
Anticausal operators use the future but not the past. Causal operators are generally associ-
ated with lower triangular matrices and positive powers of Z, whereas anticausal operators
are associated with upper triangular matrices and negative powers of Z. A transformation
like equation (1.23) but with the transposed matrix would require us to run the recursive
solution the opposite direction in time, as we did with leaky integration.

A module to backsolve (1.23) is recfilt.

The more complicated an operator, the more complicated is its adjoint. Given a trans-
formation from x to y that is TBy = x, we may wonder if the adjoint transform really
is (TB)′x̂ = y. It amounts to asking if the adjoint of y = (TB)−1x is x̂ = ((TB)′)−1y.
Mathematically we are asking if the inverse of a transpose is the transpose of the inverse.
This is so because in AA−1 = I = I′ = (A−1)′A′ the parenthesized object must be the
inverse of its neighbor A′.

The adjoint has a meaning which is nonphysical. It is like the forward operator except
that we must begin at the final time and revert towards the first. The adjoint pendulum
damps as we compute it backward in time, but that, of course, means that the adjoint
pendulum diverges as it is viewed moving forward in time.

1.1.12 The basic low-cut filter

Many geophysical measurements contain very low-frequency noise called “drift.” For ex-
ample, it might take some months to survey the depth of a lake. Meanwhile, rainfall or
evaporation could change the lake level so that new survey lines become inconsistent with
old ones. Likewise, gravimeters are sensitive to atmospheric pressure, which changes with
the weather. A magnetic survey of an archeological site would need to contend with the fact
that the earth’s main magnetic field is changing randomly through time while the survey is
being done. Such noises are sometimes called “secular noise.”

20 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

filt/lib/recfilt.c

48

49 for (i x =0; ix < nx ; i x++) {
50 t t [i x] = 0 . ;
51 }
52

53 i f (adj) {
54 for (i x = nx−1; i x >= 0 ; ix−−) {
55 t t [i x] = yy [i x] ;
56 for (i a = 0 ; i a < SF MIN(na , ny−ix −1); i a++) {
57 i y = ix + ia + 1 ;
58 t t [i x] −= aa [i a] ∗ t t [i y] ;
59 }
60 }
61 for (i x =0; ix < nx ; i x++) {
62 xx [i x] += t t [i x] ;
63 }
64 } else {
65 for (i y = 0 ; iy < ny ; i y++) {
66 t t [i y] = xx [i y] ;
67 for (i a = 0 ; i a < SF MIN(na , i y) ; i a++) {
68 i x = iy − i a − 1 ;
69 t t [i y] −= aa [i a] ∗ t t [i x] ;
70 }
71 }
72 for (i y =0; iy < ny ; i y++) {
73 yy [i y] += t t [i y] ;
74 }

1.1. FAMILIAR OPERATORS 21

The simplest way to eliminate low frequency noise is to take a time derivative. A
disadvantage is that the derivative changes the waveform from a pulse to a doublet (finite
difference). Here we examine the most basic low-cut filter. It preserves the waveform at
high frequencies; it has an adjustable parameter for choosing the bandwidth of the low cut;
and it is causal (uses the past but not the future).

We make our causal lowcut filter (highpass filter) by two stages which can be done in
either order.

1. Apply a time derivative, actually a finite difference, convolving the data with (1,−1).

2. Integrate, actually to do a leaky integration, to deconvolve with (1,−ρ) where numer-
ically, ρ is slightly less than unity.

The convolution ensures that the zero frequency is removed. The leaky integration almost
undoes the differentiation (but does not restore the zero frequency). Adjusting the numerical
value of ρ adjusts the cutoff frequency of the filter. To learn the impulse response of
the combined processes, we need to convolve the finite difference (1,−1) with the leaky
integration (1, ρ, ρ2, ρ3, ρ4, · · ·). The result is (1, ρ, ρ2, ρ3, ρ4, · · ·) minus (0, 1, ρ, ρ2, ρ3, · · ·).
We can think of this as (1, 0, 0, 0, 0, · · ·) minus (1 − ρ)(1, ρ, ρ2, ρ3, · · ·). In other words
the impulse response is an impulse followed by the negative of a weak (1 − ρ) decaying
exponential ρt. Roughly speaking, the cutoff frequency of the filter corresponds to matching
one wavelength to the exponential decay time.

Some exercise with Fourier transforms or Z-transforms2, shows the Fourier transform
of this highpass filter filter to be

H(Z) =
1− Z

1− ρZ
= 1− (1− ρ)[Z1 + ρZ2 + ρ2Z3 + ρ3Z4 · · ·] (1.26)

where the unit-delay operator is Z = eiω∆t and where ω is the frequency. A symmetical
(noncausal) lowcut filter would filter once forward with H(Z) and once backwards (adjoint)
with H(1/Z). This is not the place for a detailed Fourier analysis of this filter but it is the
place to mention that a cutoff filter is typically specified by its cutoff frequency, a frequency
that separates the pass and reject region. For this filter, the cutoff frequency ω0 would
correspond to matching a quarter wavelength of a sinusoid to the exponential decay length
of ρk, namely, say the value of k for which ρk ≈ 1/2

Seismological data is more complex. A single “measurement” consists of an explosion
and echo signals recorded at many locations. As before, a complete survey is a track (or
tracks) of explosion locations. Thus, in seismology, data space is higher dimensional. Its
most troublesome noise is not simply low frequency; it is low velocity. We will do more with
multidimensional data in later chapters.

EXERCISES:

1 Give an analytic expression for the waveform of equation (2.13).

2 Define a low-pass filter as 1−H(Z). What is the low-pass impulse response?
2 An introduction to Z-transforms is found in my earlier books, FGDP and ESA-PVI.

22 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

3 Put Galilee data on a coarse mesh. Consider north-south lines as one-dimensional
signals. Find the value of ρ for which H is the most pleasing filter.

4 Find the value of ρ for which H̄H is the most pleasing filter.

5 Find the value of ρ for which H applied to Galilee has minimum energy. (Experiment
with a range of about ten values around your favorite value.)

6 Find the value of ρ for which H̄H applied to Galilee has minimum energy.

7 Repeat above for east-west lines.

Figure 1.6: The depth of the Sea of Galilee after roughening. ajt/galilee galocut

1.1.13 Nearest-neighbor normal moveout (NMO)

Normal-moveout correction (NMO) is a geometrical correction of reflection seismic data
that stretches the time axis so that data recorded at nonzero separation x0 of shot and
receiver, after stretching, appears to be at x0 = 0. NMO correction is roughly like time-
to-depth conversion with the equation v2t2 = z2 + x2

0. After the data at x0 is stretched
from t to z, it should look like stretched data from any other x (assuming these are plane
horizontal reflectors, etc.). In practice, z is not used; rather, traveltime depth τ is used,
where τ = z/v; so t2 = τ2 + x2

0/v2. (Because of the limited alphabet of programming
languages, I often use the keystroke z to denote τ .)

1.1. FAMILIAR OPERATORS 23

Typically, many receivers record each shot. Each seismogram can be transformed by
NMO and the results all added. This is called “stacking” or “NMO stacking.” The
adjoint to this operation is to begin from a model which ideally is the zero-offset trace and
spray this model to all offsets. From a matrix viewpoint, stacking is like a row vector of
normal moveout operators and modeling is like a column. An example is shown in Figure
1.7.

Figure 1.7: Hypothetical model,
synthetic data, and model image.
ajt/cunha cunha

A module that does reverse moveout is hypotenusei. Given a zero-offset trace, it makes
another at non-zero offset. The adjoint does the usual normal moveout correction. (My
1992 textbook (PVI) illustrates many additional features of normal moveout.) A companion
routine imospray loops over offsets and makes a trace for each. The adjoint of imospray is
the industrial process of moveout and stack.

This is the first time we have built an operator (moveout and stack) from a collection
of other operators (moveout at various offsets) and there are new possibilities for confusion
and program bugs. As earlier with the matrix multiplication operator, to use the imospray
operator, there are two steps, one that we use to set things up

imospray_init(slow, x0,dx, t0,dt, nt,nx);

and another step that we use a lot in the next chapter for analysis and data fitting.

imospray_lop(adj, add, n1, n2, stack, gather);

Later we’ll see programs that are not operators. Consider the the adjoint of spraying which
is stacking. Here the occurance of the add=true in imospray assures we do not erase the
stack each time we add in another trace.

1.1.14 Coding chains and arrays

With a collection of operators, we can build more elaborate operators. One method is
chaining. For example, the operator product A = BC is represented in the subroutine
chain2(op1, op2, ...). Likewise the operator product A = BCD is represented in the
in the subroutine chain3(op1, op2, op3,...). Another way to make more elaborate
operators is to put operators in a matrix such as subroutine array also in module chain.

24 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

filt/proc/hypotenusei.c

42 void hypo t enus e i s e t (f loat t0 /∗ t ime o r i g i n ∗/ ,
43 f loat dt /∗ t ime sampling ∗/ ,
44 f loat xs /∗ o f f s e t t imes s lowness ∗/)
45 /∗< s e t up >∗/
46 {
47 int i t ;
48 f loat t , z2 ;
49

50 for (i t =0; i t < nt ; i t++) {
51 t = t0 + dt∗ i t ;
52 z2 = t ∗ t − xs ∗ xs ;
53 i z [i t] = (z2 >= 0 .) ? 0 .5 + (s q r t f (z2) − t0) /dt : −1;
54 }
55 }
56

57 void hypotenuse i l op (bool adj , bool add ,
58 int n1 , int n2 , f loat ∗zz , f loat ∗ t t)
59 /∗< l i n e a r opera tor >∗/
60 {
61 int i t ;
62

63 s f a d j n u l l (adj , add , n1 , n2 , zz , t t) ;
64

65 for (i t =0; i t < nt ; i t++) {
66 i f (i z [i t] < 0) continue ;
67

68 i f (adj)
69 zz [i z [i t]] += t t [i t] ;
70 else
71 t t [i t] += zz [i z [i t]] ;
72 }
73 }

1.1. FAMILIAR OPERATORS 25

filt/proc/imospray.c

47 void imospray lop (bool adj , bool add , int n1 , int n2 ,
48 f loat ∗ stack , f loat ∗ gather)
49 /∗< l i n e a r opera tor >∗/
50 {
51 int i x ;
52 f loat x ;
53

54 s f a d j n u l l (adj , add , n1 , n2 , stack , gather) ;
55

56 for (i x =0; ix < nx ; i x++) {
57 x = x0 + dx∗ i x ;
58

59 hypo t enus e i s e t (t0 , dt , x) ;
60 hypotenuse i l op (adj , true , nt , nt , stack , gather+ix ∗nt) ;
61 }
62 }

filt/lib/chain.c

26 void s f c h a i n (s f o p e r a t o r oper1 /∗ outer opera tor ∗/ ,
27 s f o p e r a t o r oper2 /∗ inner opera tor ∗/ ,
28 bool adj /∗ ad j o i n t f l a g ∗/ ,
29 bool add /∗ add i t i on f l a g ∗/ ,
30 int nm /∗ model s i z e ∗/ ,
31 int nd /∗ data s i z e ∗/ ,
32 int nt /∗ i n t e rmed ia t e s i z e ∗/ ,
33 /∗@out@∗/ f loat ∗ mod /∗ [nm] model ∗/ ,
34 /∗@out@∗/ f loat ∗ dat /∗ [nd] data ∗/ ,
35 f loat ∗ tmp /∗ [nt] in t e rmed ia t e ∗/)
36 /∗< Chains two operators , computing oper1{oper2{mod}}
37 or i t s a d j o i n t . The tmp array i s used f o r temporary s t o rage . >∗/
38 {
39 i f (adj) {
40 oper1 (true , f a l s e , nt , nd , tmp , dat) ;
41 oper2 (true , add , nm, nt , mod , tmp) ;
42 } else {
43 oper2 (f a l s e , f a l s e , nm, nt , mod , tmp) ;
44 oper1 (f a l s e , add , nt , nd , tmp , dat) ;
45 }
46 }

26 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

filt/lib/chain.c

70 void s f a r r a y (s f o p e r a t o r oper1 /∗ top opera tor ∗/ ,
71 s f o p e r a t o r oper2 /∗ bottom opera tor ∗/ ,
72 bool adj /∗ ad j o i n t f l a g ∗/ ,
73 bool add /∗ add i t i on f l a g ∗/ ,
74 int nm /∗ model s i z e ∗/ ,
75 int nd1 /∗ top data s i z e ∗/ ,
76 int nd2 /∗ bottom data s i z e ∗/ ,
77 /∗@out@∗/ f loat ∗ mod /∗ [nm] model ∗/ ,
78 /∗@out@∗/ f loat ∗ dat1 /∗ [nd1] top data ∗/ ,
79 /∗@out@∗/ f loat ∗ dat2 /∗ [nd2] bottom data ∗/)
80 /∗< Constructs an array o f two operators ,
81 computing {oper1{mod} , oper2{mod}} or i t s a d j o i n t . >∗/
82 {
83 i f (adj) {
84 oper1 (true , add , nm, nd1 , mod, dat1) ;
85 oper2 (true , true , nm, nd2 , mod, dat2) ;
86 } else {
87 oper1 (f a l s e , add , nm, nd1 , mod, dat1) ;
88 oper2 (f a l s e , add , nm, nd2 , mod, dat2) ;
89 }
90 }

1.2 ADJOINT DEFINED: DOT-PRODUCT TEST

Having seen many examples of spaces, operators, and adjoints, we should now see more
formal definitions because abstraction helps us push these concepts to their limits.

1.2.1 Definition of a vector space

An operator transforms a space to another space. Examples of spaces are model space m
and data space d. We think of these spaces as vectors whose components are packed with
numbers, either real or complex numbers. The important practical concept is that not only
does this packing include one-dimensional spaces like signals, two-dimensional spaces like
images, 3-D movie cubes, and zero-dimensional spaces like a data mean, etc, but spaces
can be sets of all the above. One space that is a set of three cubes is the earth’s magnetic
field, which has three components; and each component is a function of a three-dimensional
space. (The 3-D physical space we live in is not the abstract vector space of models and
data so abundant in this book. Here the word “space” without an adjective means the
vector space.)

A more heterogeneous example of a vector space is data tracks. A depth-sounding
survey of a lake can make a vector space that is a collection of tracks, a vector of vectors
(each vector having a different number of components, because lakes are not square). This

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 27

vector space of depths along tracks in a lake contains the depth values only. The (x, y)-
coordinate information locating each measured depth value is (normally) something outside
the vector space. A data space could also be a collection of echo soundings, waveforms
recorded along tracks.

We briefly recall information about vector spaces found in elementary books: Let α be
any scalar. Then if d1 is a vector and d2 is conformable with it, then other vectors are αd1

and d1 + d2. The size measure of a vector is a positive value called a norm. The norm is
usually defined to be the dot product (also called the L2 norm), say d · d. For complex
data it is d̄ · d where d̄ is the complex conjugate of d. In theoretical work the “length of
a vector” means the vector’s norm. In computational work the “length of a vector” means
the number of components in the vector.

Norms generally include a weighting function. In physics, the norm generally mea-
sures a conserved quantity like energy or momentum, so, for example, a weighting function
for magnetic flux is permittivity. In data analysis, the proper choice of the weighting func-
tion is a practical statistical issue, discussed repeatedly throughout this book. The algebraic
view of a weighting function is that it is a diagonal matrix with positive values w(i) ≥ 0
spread along the diagonal, and it is denoted W = diag[w(i)]. With this weighting function
the L2 norm of a data space is denoted d′Wd. Standard notation for norms uses a double
absolute value, where ||d|| = d′Wd. A central concept with norms is the triangle inequality,
||d1 + d2|| ≤ ||d1||+ ||d2|| whose proof you might recall (or reproduce with the use of dot
products).

1.2.2 Dot-product test for validity of an adjoint

There is a huge gap between the conception of an idea and putting it into practice. During
development, things fail far more often than not. Often, when something fails, many tests
are needed to track down the cause of failure. Maybe the cause cannot even be found.
More insidiously, failure may be below the threshold of detection and poor performance
suffered for years. The dot-product test enables us to ascertain whether the program for
the adjoint of an operator is precisely consistent with the operator itself. It can be, and it
should be.

Conceptually, the idea of matrix transposition is simply a′ij = aji. In practice, however,
we often encounter matrices far too large to fit in the memory of any computer. Sometimes
it is also not obvious how to formulate the process at hand as a matrix multiplication. (Ex-
amples are differential equations and fast Fourier transforms.) What we find in practice is
that an application and its adjoint amounts to two routines. The first routine amounts to the
matrix multiplication Fx. The adjoint routine computes F′y, where F′ is the conjugate-
transpose matrix. In later chapters we will be solving huge sets of simultaneous equations,
in which both routines are required. If the pair of routines are inconsistent, we are doomed
from the start. The dot-product test is a simple test for verifying that the two routines are
adjoint to each other.

The associative property of linear algebra says that we do not need parentheses in a
vector-matrix-vector product like y′Fx because we get the same result no matter where we

28 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

put the parentheses. They serve only to determine the sequence of computation. Thus,

y′(Fx) = (y′F)x (1.27)
y′(Fx) = (F′y)′x (1.28)

(In general, the matrix is not square.) To perform the dot-product test, load the vectors x
and y with random numbers. Using your program for F, compute the vector ỹ = Fx, and
using your program for F′, compute x̃ = F′y. Inserting these into equation (1.28) gives you
two scalars that should be equal.

y′(Fx) = y′ỹ = x̃′x = (F′y)′x (1.29)

The left and right sides of this equation will be computationally equal only if the program
doing F′ is indeed adjoint to the program doing F (unless the random numbers do some-
thing miraculous). A final word: If an operator uses complex arithmetic then both its
input and output are “in the field of complex numbers.” The conversion between real and
complex numbers is not a linear operator despite its seeming similarity to truncation and
zero padding.

The program for applying the dot product test is dottest on page 28. The C way of
passing a linear operator as an argument is to specify the function interface. Fortunately,
we have already defined the interface for a generic linear operator. To use the dottest
program, you need to initialize an operator with specific arguments (the init subroutine)
and then pass the operator itself (the lop function) to the test program. You also need to
specify the sizes of the model and data vectors so that temporary arrays can be constructed.
The program runs the dot product test twice, second time with add = true to test if the
operator can be used properly for accumulating the result like y← y + Bx.

filt/lib/dottest.c

50 oper (f a l s e , f a l s e , nm, nd , mod1 , dat1) ;
51 dot1 [0] = cb l a s s do t (nd , dat1 , 1 , dat2 , 1) ;
52

53 oper (true , f a l s e , nm, nd , mod2 , dat2) ;
54 dot1 [1] = cb l a s s do t (nm, mod1 , 1 , mod2 , 1) ;
55

56 oper (f a l s e , true , nm, nd , mod1 , dat1) ;
57 dot2 [0] = cb l a s s do t (nd , dat1 , 1 , dat2 , 1) ;
58

59 oper (true , true , nm, nd , mod2 , dat2) ;
60 dot2 [1] = cb l a s s do t (nm, mod1 , 1 , mod2 , 1) ;

I tested (1.29) on many operators and was surprised and delighted to find that it is often
satisfied to an accuracy near the computing precision. I do not doubt that larger rounding
errors could occur, but so far, every time I encountered a relative discrepancy of 10−5 or
more, I was later able to uncover a conceptual or programming error. Naturally, when I do
dot-product tests, I scale the implied matrix to a small dimension in order to speed things
along, and to be sure that boundaries are not overwhelmed by the much larger interior.

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 29

Do not be alarmed if the operator you have defined has truncation errors. Such errors
in the definition of the original operator should be identically matched by truncation errors
in the adjoint operator. If your code passes the dot-product test, then you really have
coded the adjoint operator. In that case, to obtain inverse operators, you can take advantage
of the standard methods of mathematics.

We can speak of a continuous function f(t) or a discrete function ft. For con-
tinuous functions we use integration, and for discrete ones we use summation. In formal
mathematics, the dot-product test defines the adjoint operator, except that the summation
in the dot product may need to be changed to an integral. The input or the output or
both can be given either on a continuum or in a discrete domain. So the dot-product test
y′ỹ = x̃′x could have an integration on one side of the equal sign and a summation on the
other. Linear-operator theory is rich with concepts not developed here.

1.2.3 The word “adjoint”

In mathematics the word “adjoint” has three meanings. One of them, the so-called Hilbert
adjoint, is the one generally found in physics and engineering and it is the one used in
this book. In linear algebra is a different matrix, called the adjugate matrix. It is a
matrix whose elements are signed cofactors (minor determinants). For invertible matrices,
this matrix is the determinant times the inverse matrix. It can be computed without
ever using division, so potentially the adjugate can be useful in applications where an
inverse matrix does not exist. Unfortunately, the adjugate matrix is sometimes called the
adjoint matrix, particularly in the older literature. Because of the confusion of multiple
meanings of the word adjoint, in the first printing of PVI, I avoided the use of the word
and substituted the definition, “conjugate transpose”. Unfortunately this was often
abbreviated to “conjugate,” which caused even more confusion. Thus I decided to use the
word adjoint and have it always mean the Hilbert adjoint found in physics and engineering.

1.2.4 Matrix versus operator

Here is a short summary of where we have been and where we are going: Start from the class
of linear operators, add subscripts and you get matrices. Examples of operators without
subscripts are routines that solve differential equations and routines that do fast Fourier
transform. What people call “sparse matrices” are often not really matrices but operators,
because they are not defined by data structures but by routines that apply them to a vector.
With sparse matrices you easily can do A(B(Cx)) but not (ABC)x.

Although a linear operator does not have defined subscripts, you can determine what
would be the operator value at any subscript: by applying the operator to an impulse
function, you would get a matrix column. The adjoint operator is one from which we
can extract the transpose matrix. For large spaces this extraction is unwieldy, so to test
the validity of adjoints, we probe them with random vectors, say x and y, to see whether
y′(Ax) = (A′y)′x. Mathematicians define adjoints by this test, except that instead of using
random vectors, they say “for all functions,” which includes the continuum.

This defining test makes adjoints look mysterious. Careful inspection of operator ad-
joints, however, generally reveals that they are built up from simple matrices. Given adjoints

30 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

A′, B′, and C′, the adjoint of ABC is C′B′A′. Fourier transforms and linear-differential-
equation solvers are chains of matrices, so their adjoints can be assembled by the application
of adjoint components in reverse order. The other way we often see complicated operators
being built from simple ones is when operators are put into components of matrices, typ-
ically a 1 × 2 or 2 × 1 matrix containing two operators. An example of the adjoint of a
two-component column operator is[

A
B

]′
=

[
A′ B′]

(1.30)

Although in practice an operator might be built from matrices, fundamentally, a matrix
is a data structure whereas an operator is a procedure. A matrix is an operator if its
subscripts are hidden but it can be applied to a space, producing another space.

As matrices have inverses, so do linear operators. You don’t need subscripts to find an
inverse. The conjugate-gradient method and conjugate-direction method explained in the
next chapter are attractive methods of finding them. They merely apply A and A′ and
use inner products to find coefficients of a polynomial in AA′ that represents the inverse
operator.

Whenever we encounter a positive-definite matrix we should recognize its likely origin
in a nonsymmetric matrix F times its adjoint. Those in natural sciences often work on
solving simultaneous equations but fail to realize that they should return to the origin of
the equations which is often a fitting goal; i.e., applying an operator to a model should
yield data, i.e., d ≈ d0 + F(m −m0) where the operator F is a partial derivative matrix
(and there are potential underlying nonlinearities). This begins another story with new
ingredients, weighting functions and statistics.

1.2.5 Inverse operator

A common practical task is to fit a vector of observed data dobs to some theoretical data
dtheor by the adjustment of components in a vector of model parameters m.

dobs ≈ dtheor = Fm (1.31)

A huge volume of literature establishes theory for two estimates of the model, m̂1 and m̂2,
where

m̂1 = (F′F)−1F′d (1.32)
m̂2 = F′(FF′)−1d (1.33)

Some reasons for the literature being huge are the many questions about the existence,
quality, and cost of the inverse operators. Before summarizing that, let us quickly see
why these two solutions are reasonable. Inserting equation (1.31) into equation (1.32), and
inserting equation (1.33) into equation (1.31), we get the reasonable statements:

m̂1 = (F′F)−1(F′F)m = m (1.34)
d̂theor = (FF′)(FF′)−1d = d (1.35)

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 31

Equation (1.34) says that the estimate m̂1 gives the correct model m if you start from the
theoretical data. Equation (1.35) says that the model estimate m̂2 gives the theoretical
data if we derive m̂2 from the theoretical data. Both of these statements are delightful.
Now let us return to the problem of the inverse matrices.

Strictly speaking, a rectangular matrix does not have an inverse. Surprising things often
happen, but commonly, when F is a tall matrix (more data values than model values) then
the matrix for finding m̂1 is invertible while that for finding m̂2 is not, and when the matrix
is wide instead of tall (the number of data values is less than the number of model values)
it is the other way around. In many applications neither F′F nor FF′ is invertible. This
difficulty is solved by “damping” as we will see in later chapters. The point to notice
in this chapter on adjoints is that in any application where FF′ or F′F equals I (unitary
operator), that the adjoint operator F′ is the inverse F−1 by either equation (1.32) or (1.33).

Theoreticians like to study inverse problems where m is drawn from the field of continu-
ous functions. This is like the vector m having infinitely many components. Such problems
are hopelessly intractable unless we find, or assume, that the operator F′F is an identity or
diagonal matrix.

In practice, theoretical considerations may have little bearing on how we proceed. Cur-
rent computational power limits matrix inversion jobs to about 104 variables. This book
specializes in big problems, those with more than about 104 variables, but the methods we
learn are also excellent for smaller problems.

1.2.6 Automatic adjoints

Computers are not only able to perform computations; they can do mathematics. Well
known software is Mathematica and Maple. Adjoints can also be done by symbol manipu-
lation. For example Ralf Giering offers a program for converting linear operator programs
into their adjoints.

EXERCISES:

1 Suppose a linear operator F has its input in the discrete domain and its output in the
continuum. How does the operator resemble a matrix? Describe the operator F′ that
has its input in the discrete domain and its output in the continuum. To which do
you apply the words “scales and adds some functions,” and to which do you apply the
words “does a bunch of integrals”? What are the integrands?

http://www.fastopt.de/people/ralf/

32 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Chapter 2

Model fitting by least squares

The first level of computer use in science and engineering is modeling. Beginning from
physical principles and design ideas, the computer mimics nature. After this, the worker
looks at the result and thinks a while, then alters the modeling program and tries again.
The next, deeper level of computer use is that the computer itself examines the results of
modeling and reruns the modeling job. This deeper level is variously called “fitting” or
“estimation” or “inversion.” We inspect the conjugate-direction method of fitting
and write a subroutine for it that will be used in most of the examples in this monograph.

2.1 HOW TO DIVIDE NOISY SIGNALS

If ”inversion” is dividing by a matrix, then the place to begin is dividing one number by
another, say one function of frequency by another function of frequency. A single parameter
fitting problem arises in Fourier analysis, where we seek a “best answer” at each frequency,
then combine all the frequencies to get a best signal. Thus emerges a wide family of
interesting and useful applications. However, Fourier analysis first requires us to introduce
complex numbers into statistical estimation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-
domain division is time-domain deconvolution. This division is challenging when the
divisor has observational error. Failure erupts if zero division occurs. More insidious are
the poor results we obtain when zero division is avoided by a near miss.

2.1.1 Dividing by zero smoothly

Think of any real numbers x, y, and f where y = xf . Given y and f we see a computer
program containing x = y/f . How can we change the program so that it never divides by
zero? A popular answer is to change x = y/f to x = yf/(f2 + ε2), where ε is any tiny
value. When |f | >> |ε|, then x is approximately y/f as expected. But when the divisor
f vanishes, the result is safely zero instead of infinity. The transition is smooth, but some
criterion is needed to choose the value of ε. This method may not be the only way or the
best way to cope with zero division, but it is a good way, and it permeates the subject of
signal analysis.

33

34 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

To apply this method in the Fourier domain, suppose that X, Y , and F are complex
numbers. What do we do then with X = Y/F? We multiply the top and bottom by the
complex conjugate F , and again add ε2 to the denominator. Thus,

X(ω) =
F (ω) Y (ω)

F (ω)F (ω) + ε2
(2.1)

Now the denominator must always be a positive number greater than zero, so division is
always safe. Equation (2.1) ranges continuously from inverse filtering, with X = Y/F , to
filtering with X = FY , which is called “matched filtering.” Notice that for any complex
number F , the phase of 1/F equals the phase of F , so the filters 1/F and F have inverse
amplitudes but identical phase.

2.1.2 Damped solution

Equation (2.1) is the solution to an optimization problem that arises in many applications.
Now that we know the solution, let us formally define the problem. First, we will solve a
simpler problem with real values: we will choose to minimize the quadratic function of
x:

Q(x) = (fx− y)2 + ε2x2 (2.2)

The second term is called a “damping factor” because it prevents x from going to ±∞
when f → 0. Set dQ/dx = 0, which gives

0 = f(fx− y) + ε2x (2.3)

This yields the earlier answer x = fy/(f2 + ε2).

With Fourier transforms, the signal X is a complex number at each frequency ω. So we
generalize equation (2.2) to

Q(X̄,X) = (FX − Y)(FX − Y) + ε2X̄X = (X̄F̄ − Ȳ)(FX − Y) + ε2X̄X (2.4)

To minimize Q we could use a real-values approach, where we express X = u + iv in terms
of two real values u and v and then set ∂Q/∂u = 0 and ∂Q/∂v = 0. The approach we will
take, however, is to use complex values, where we set ∂Q/∂X = 0 and ∂Q/∂X̄ = 0. Let us
examine ∂Q/∂X̄:

∂Q(X̄,X)
∂X̄

= F̄ (FX − Y) + ε2X = 0 (2.5)

The derivative ∂Q/∂X is the complex conjugate of ∂Q/∂X̄. So if either is zero, the other
is too. Thus we do not need to specify both ∂Q/∂X = 0 and ∂Q/∂X̄ = 0. I usually set
∂Q/∂X̄ equal to zero. Solving equation (2.5) for X gives equation (2.1).

Equation (2.1) solves Y = XF for X, giving the solution for what is called “the decon-
volution problem with a known wavelet F .” Analogously we can use Y = XF when the
filter F is unknown, but the input X and output Y are given. Simply interchange X and
F in the derivation and result.

2.1. HOW TO DIVIDE NOISY SIGNALS 35

2.1.3 Smoothing the denominator spectrum

Equation (2.1) gives us one way to divide by zero. Another way is stated by the equation

X(ω) =
F (ω) Y (ω)
〈F (ω)F (ω)〉

(2.6)

where the strange notation in the denominator means that the spectrum there should be
smoothed a little. Such smoothing fills in the holes in the spectrum where zero-division is a
danger, filling not with an arbitrary numerical value ε but with an average of nearby spectral
values. Additionally, if the denominator spectrum F (ω)F (ω) is rough, the smoothing creates
a shorter autocorrelation function.

Both divisions, equation (2.1) and equation (2.6), irritate us by requiring us to specify
a parameter, but for the latter, the parameter has a clear meaning. In the latter case we
smooth a spectrum with a smoothing window of width, say ∆ω which this corresponds
inversely to a time interval over which we smooth. Choosing a numerical value for ε has
not such a simple interpretation.

We jump from simple mathematical theorizing towards a genuine practical application
when I grab some real data, a function of time and space from another textbook. Let us call
this data f(t, x) and its 2-D Fourier transform F (ω, kx). The data and its autocorrelation
are in Figure 2.1.

The autocorrelation a(t, x) of f(t, x) is the inverse 2-D Fourier Transform of F (ω, kx)F (ω, kx).
Autocorrelations a(x, y) satisfy the symmetry relation a(x, y) = a(−x,−y). Figure 2.2
shows only the interesting quadrant of the two independent quadrants. We see the au-
tocorrelation of a 2-D function has some resemblance to the function itself but differs in
important ways.

Instead of messing with two different functions X and Y to divide, let us divide F by
itself. This sounds like 1 = F/F but we will watch what happens when we do the division
carefully avoiding zero division in the ways we usually do.

Figure 2.2 shows what happens with

1 = F/F ≈ FF

FF + ε2
(2.7)

and with

1 = F/F ≈ FF

〈FF 〉
(2.8)

From Figure 2.2 we notice that both methods of avoiding zero division give similar
results. By playing with the ε and the smoothing width the pictures could be made even
more similar. My preference, however, is the smoothing. It is difficult to make physical sense
of choosing a numerical value for ε. It is much easier to make physical sense of choosing a
smoothing window. The smoothing window is in (ω, kx) space, but Fourier transformation
tells us its effect in (t, x) space.

36 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Figure 2.1: 2-D data (right) and a quadrant of its autocorrelation (left). Notice the longest
nonzero time lag on the data is about 5.5 sec which is the latest nonzero signal on the
autocorrelation. lsq/antoine antoine10

2.1. HOW TO DIVIDE NOISY SIGNALS 37

Figure 2.2: Equation (2.7) (left) and equation (2.8) (right). Both ways of dividing by zero
give similar results. lsq/antoine antoine11

38 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

2.1.4 Imaging

The example of dividing a function by itself (1 = F/F) might not seem to make much sense,
but it is very closely related to estimation often encounted in imaging applications. It’s not
my purpose here to give a lecture on imaging theory, but here is an overbrief explanation.

Imagine a downgoing wavefield D(ω, x, z) and scatterer that from the downgoing wave-
field creates an upgoing wavefield U(ω, x, z). Given U and D, if there is a stong temporal
correlation between them at any (x, z) it likely means there is a reflector nearby that is
manufacturing U from D. This reflectivity could be quantified by U/D. At the earth’s
surface the surface boundary condition says something like U = D or U = −D. Thus at
the surface we have something like F/F . As we go down in the earth, the main difference
is that U and D get time shifted in opposite directions, so U and D are similar but for that
time difference. Thus, a study of how we handle F/F is worthwhile.

2.1.5 Formal path to the low-cut filter

This book defines many geophysical estimation problems. Many of them amount to state-
ment of two goals. The first goal is a data fitting goal, the goal that the model should imply
some observed data. The second goal is that the model be not too big or too wiggly. We
will state these goals as two residuals, each of which is ideally zero. A very simple data
fitting goal would be that the model m equals the data d, thus the difference should vanish,
say 0 ≈ m− d. A more interesting goal is that the model should match the data especially
at high frequencies but not necessarily at low frequencies.

0 ≈ −iω(m− d) (2.9)

A danger of this goal is that the model could have a zero-frequency component of infinite
magnitude as well as large amplitudes for low frequencies. To suppress this, we need the
second goal, a model residual which is to be minimized. We need a small number ε. The
model goal is

0 ≈ ε m (2.10)

To see the consequence of these two goals, we add the squares of the residuals

Q(m) = ω2(m− d)2 + ε2m2 (2.11)

and then we minimize Q(m) by setting its derivative to zero

0 =
dQ

dm
= 2ω2(m− d) + 2ε2m (2.12)

or

m =
ω2

ω2 + ε2
d (2.13)

which is a low-cut filter with a cutoff frequency of ω0 = ε.

Of some curiosity and significance is the numerical choice of ε. The general theory says
we need an epsilon, but does not say how much. For now let us simply rename ε = ω0 and
think of it as a “cut off frequency”.

2.2. MULTIVARIATE LEAST SQUARES 39

2.2 MULTIVARIATE LEAST SQUARES

2.2.1 Inside an abstract vector

In engineering uses, a vector has three scalar components that correspond to the three
dimensions of the space in which we live. In least-squares data analysis, a vector is a one-
dimensional array that can contain many different things. Such an array is an “abstract
vector.” For example, in earthquake studies, the vector might contain the time an earth-
quake began, as well as its latitude, longitude, and depth. Alternatively, the abstract vector
might contain as many components as there are seismometers, and each component might
be the arrival time of an earthquake wave. Used in signal analysis, the vector might contain
the values of a signal at successive instants in time or, alternatively, a collection of signals.
These signals might be “multiplexed” (interlaced) or “demultiplexed” (all of each signal
preceding the next). When used in image analysis, the one-dimensional array might contain
an image, which could itself be thought of as an array of signals. Vectors, including abstract
vectors, are usually denoted by boldface letters such as p and s. Like physical vectors,
abstract vectors are orthogonal when their dot product vanishes: p · s = 0. Orthogonal
vectors are well known in physical space; we will also encounter them in abstract vector
space.

We consider first a hypothetical application with one data vector d and two fitting
vectors f1 and f2. Each fitting vector is also known as a “regressor.” Our first task is to
approximate the data vector d by a scaled combination of the two regressor vectors. The
scale factors x1 and x2 should be chosen so that the model matches the data; i.e.,

d ≈ f1x1 + f2x2 (2.14)

Notice that we could take the partial derivative of the data in (2.14) with respect to an
unknown, say x1, and the result is the regressor f1.

The partial derivative of all theoretical data with respect to any model parame-
ter gives a regressor. A regressor is a column in the matrix of partial-derivatives,
∂di/∂mj .

The fitting goal (2.14) is often expressed in the more compact mathematical matrix
notation d ≈ Fx, but in our derivation here we will keep track of each component explicitly
and use mathematical matrix notation to summarize the final result. Fitting the observed
data d = dobs to its two theoretical parts f1x1 and f2x2 can be expressed as minimizing the
length of the residual vector r, where

0 ≈ r = dtheor − dobs (2.15)
0 ≈ r = f1x1 + f2x2 − d (2.16)

We use a dot product to construct a sum of squares (also called a “quadratic form”)
of the components of the residual vector:

Q(x1, x2) = r · r (2.17)
= (f1x1 + f2x2 − d) · (f1x1 + f2x2 − d) (2.18)

40 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

To find the gradient of the quadratic form Q(x1, x2), you might be tempted to expand out
the dot product into all nine terms and then differentiate. It is less cluttered, however, to
remember the product rule, that

d

dx
r · r =

dr
dx
· r + r · dr

dx
(2.19)

Thus, the gradient of Q(x1, x2) is defined by its two components:

∂Q

∂x1
= f1 · (f1x1 + f2x2 − d) + (f1x1 + f2x2 − d) · f1 (2.20)

∂Q

∂x2
= f2 · (f1x1 + f2x2 − d) + (f1x1 + f2x2 − d) · f2 (2.21)

Setting these derivatives to zero and using (f1 · f2) = (f2 · f1) etc., we get

(f1 · d) = (f1 · f1)x1 + (f1 · f2)x2 (2.22)
(f2 · d) = (f2 · f1)x1 + (f2 · f2)x2 (2.23)

We can use these two equations to solve for the two unknowns x1 and x2. Writing this
expression in matrix notation, we have[

(f1 · d)
(f2 · d)

]
=

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

] [
x1

x2

]
(2.24)

It is customary to use matrix notation without dot products. To do this, we need some
additional definitions. To clarify these definitions, we inspect vectors f1, f2, and d of three
components. Thus

F = [f1 f2] =

 f11 f12

f21 f22

f31 f32

 (2.25)

Likewise, the transposed matrix F′ is defined by

F′ =
[

f11 f21 f31

f12 f22 f32

]
(2.26)

The matrix in equation (2.24) contains dot products. Matrix multiplication is an abstract
way of representing the dot products:[

(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

]
=

[
f11 f21 f31

f12 f22 f32

] f11 f12

f21 f22

f31 f32

 (2.27)

Thus, equation (2.24) without dot products is

[
f11 f21 f31

f12 f22 f32

] d1

d2

d3

 =
[

f11 f21 f31

f12 f22 f32

] f11 f12

f21 f22

f31 f32

[
x1

x2

]
(2.28)

which has the matrix abbreviation

F′d = (F′ F)x (2.29)

2.2. MULTIVARIATE LEAST SQUARES 41

Equation (2.29) is the classic result of least-squares fitting of data to a collection of regres-
sors. Obviously, the same matrix form applies when there are more than two regressors and
each vector has more than three components. Equation (2.29) leads to an analytic solu-
tion for x using an inverse matrix. To solve formally for the unknown x, we premultiply
by the inverse matrix (F′ F)−1:

x = (F′ F)−1 F′d (2.30)

Equation (2.30) is the central result of least-squares theory. We see it everywhere.

In our first manipulation of matrix algebra, we move around some parentheses in (2.29):

F′d = F′ (Fx) (2.31)

Moving the parentheses implies a regrouping of terms or a reordering of a computation.
You can verify the validity of moving the parentheses if you write (2.31) in full as the set
of two equations it represents. Equation (2.29) led to the “analytic” solution (2.30). In a
later section on conjugate directions, we will see that equation (2.31) expresses better than
(2.30) the philosophy of iterative methods.

Notice how equation (2.31) invites us to cancel the matrix F′ from each side. We cannot
do that of course, because F′ is not a number, nor is it a square matrix with an inverse.
If you really want to cancel the matrix F′, you may, but the equation is then only an
approximation that restates our original goal (2.14):

d ≈ Fx (2.32)

A speedy problem solver might ignore the mathematics covering the previous page,
study his or her application until he or she is able to write the statement of goals (2.32)
= (2.14), premultiply by F′, replace≈ by =, getting (2.29), and take (2.29) to a simultaneous
equation-solving program to get x.

What I call “fitting goals” are called “regressions” by statisticians. In common
language the word regression means to “trend toward a more primitive perfect state” which
vaguely resembles reducing the size of (energy in) the residual r = Fx − d. Formally this
is often written as:

min
x
||Fx− d|| (2.33)

The notation above with two pairs of vertical lines looks like double absolute value, but
we can understand it as a reminder to square and sum all the components. This formal
notation is more explicit about what is constant and what is variable during the fitting.

2.2.2 Normal equations

An important concept is that when energy is minimum, the residual is orthogonal to the
fitting functions. The fitting functions are the column vectors f1, f2, and f3. Let us verify
only that the dot product r · f2 vanishes; to do this, we’ll show that those two vectors are
orthogonal. Energy minimum is found by

0 =
∂

∂x2
r · r = 2 r · ∂r

∂x2
= 2 r · f2 (2.34)

42 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

(To compute the derivative refer to equation (2.16).) Equation (2.34) shows that the residual
is orthogonal to a fitting function. The fitting functions are the column vectors in the fitting
matrix.

The basic least-squares equations are often called the “normal” equations. The word
“normal” means perpendicular. We can rewrite equation (2.31) to emphasize the perpen-
dicularity. Bring both terms to the left, and recall the definition of the residual r from
equation (2.16):

F′(Fx− d) = 0 (2.35)
F′r = 0 (2.36)

Equation (2.36) says that the residual vector r is perpendicular to each row in the F′

matrix. These rows are the fitting functions. Therefore, the residual, after it has been
minimized, is perpendicular to all the fitting functions.

2.2.3 Differentiation by a complex vector

Complex numbers frequently arise in physical problems, particularly those with Fourier
series. Let us extend the multivariable least-squares theory to the use of complex-valued
unknowns x. First recall how complex numbers were handled with single-variable least
squares; i.e., as in the discussion leading up to equation (2.5). Use a prime, such as x′, to
denote the complex conjugate of the transposed vector x. Now write the positive quadratic
form as

Q(x′,x) = (Fx− d)′(Fx− d) = (x′F′ − d′)(Fx− d) (2.37)

After equation (2.4), we minimized a quadratic form Q(X̄,X) by setting to zero both
∂Q/∂X̄ and ∂Q/∂X. We noted that only one of ∂Q/∂X̄ and ∂Q/∂X is necessarily zero
because they are conjugates of each other. Now take the derivative of Q with respect to the
(possibly complex, row) vector x′. Notice that ∂Q/∂x′ is the complex conjugate transpose
of ∂Q/∂x. Thus, setting one to zero sets the other also to zero. Setting ∂Q/∂x′ = 0 gives
the normal equations:

0 =
∂Q

∂x′
= F′(Fx− d) (2.38)

The result is merely the complex form of our earlier result (2.35). Therefore, differentiating
by a complex vector is an abstract concept, but it gives the same set of equations as
differentiating by each scalar component, and it saves much clutter.

2.2.4 From the frequency domain to the time domain

Equation (2.4) is a frequency-domain quadratic form that we minimized by varying a single
parameter, a Fourier coefficient. Now we will look at the same problem in the time domain.
We will see that the time domain offers flexibility with boundary conditions, constraints,
and weighting functions. The notation will be that a filter ft has input xt and output yt.
In Fourier space this is Y = XF . There are two problems to look at, unknown filter F and
unknown input X.

2.2. MULTIVARIATE LEAST SQUARES 43

Unknown filter

When inputs and outputs are given, the problem of finding an unknown filter appears to be
overdetermined, so we write y ≈ Xf where the matrix X is a matrix of downshifted columns
like (1.5). Thus the quadratic form to be minimized is a restatement of equation (2.37) with
filter definitions:

Q(f ′, f) = (Xf − y)′(Xf − y) (2.39)

The solution f is found just as we found (2.38), and it is the set of simultaneous equations
0 = X′(Xf − y).

Unknown input: deconvolution with a known filter

For solving the unknown-input problem, we put the known filter ft in a matrix of down-
shifted columns F. Our statement of wishes is now to find xt so that y ≈ Fx. We can
expect to have trouble finding unknown inputs xt when we are dealing with certain kinds
of filters, such as bandpass filters. If the output is zero in a frequency band, we will never
be able to find the input in that band and will need to prevent xt from diverging there.
We do this by the statement that we wish 0 ≈ εx, where ε is a parameter that is small
and whose exact size will be chosen by experimentation. Putting both wishes into a single,
partitioned matrix equation gives[

0
0

]
≈

[
r1

r2

]
=

[
F
ε I

]
x −

[
y
0

]
(2.40)

To minimize the residuals r1 and r2, we can minimize the scalar r′r = r′1r1 + r′2r2. This is

Q(x′,x) = (Fx− y)′(Fx− y) + ε2x′x

= (x′F′ − y′)(Fx− y) + ε2x′x (2.41)

We solved this minimization in the frequency domain (beginning from equation (2.4)).

Formally the solution is found just as with equation (2.38), but this solution looks
unappealing in practice because there are so many unknowns and because the problem can
be solved much more quickly in the Fourier domain. To motivate ourselves to solve this
problem in the time domain, we need either to find an approximate solution method that is
much faster, or to discover that constraints or time-variable weighting functions are required
in some applications. This is an issue we must be continuously alert to, whether the cost
of a method is justified by its need.

EXERCISES:

1 In 1695, 150 years before Lord Kelvin’s absolute temperature scale, 120 years before
Sadi Carnot’s PhD thesis, 40 years before Anders Celsius, and 20 years before Gabriel
Farenheit, the French physicist Guillaume Amontons, deaf since birth, took a mercury
manometer (pressure gauge) and sealed it inside a glass pipe (a constant volume of air).
He heated it to the boiling point of water at 100◦C. As he lowered the temperature
to freezing at 0◦ C, he observed the pressure dropped by 25% . He could not drop

44 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

the temperature any further but he supposed that if he could drop it further by a
factor of three, the pressure would drop to zero (the lowest possible pressure) and
the temperature would have been the lowest possible temperature. Had he lived after
Anders Celsius he might have calculated this temperature to be −300◦ C (Celsius).
Absolute zero is now known to be −273◦ C.

It is your job to be Amontons’ lab assistant. Your ith measurement of temperature Ti

you make with Issac Newton’s thermometer and you measure pressure Pi and volume
Vi in the metric system. Amontons needs you to fit his data with the regression 0 ≈
α(Ti−T0)−PiVi and calculate the temperature shift T0 that Newton should have made
when he defined his temperature scale. Do not solve this problem! Instead, cast it
in the form of equation (2.14), identifying the data d and the two column vectors f1
and f2 that are the fitting functions. Relate the model parameters x1 and x2 to the
physical parameters α and T0. Suppose you make ALL your measurements at room
temperature, can you find T0? Why or why not?

2.3 KRYLOV SUBSPACE ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the number
of unknowns. There are three regimes for solution; which one is applicable depends on the
number of unknowns m. For m three or less, we use analytical methods. We also sometimes
use analytical methods on matrices of size 4 × 4 when the matrix contains enough zeros.
Today in year 2001, a deskside workstation, working an hour solves about a 4000 × 4000
set of simultaneous equations. A square image packed into a 4096 point vector is a 64× 64
array. The computer power for linear algebra to give us solutions that fit in a k × k image
is thus proportional to k6, which means that even though computer power grows rapidly,
imaging resolution using “exact numerical methods” hardly grows at all from our 64 × 64
current practical limit.

The retina in our eyes captures an image of size about 1000× 1000 which is a lot bigger
than 64× 64. Life offers us many occasions where final images exceed the 4000 points of a
64 × 64 array. To make linear algebra (and inverse theory) relevant to such problems, we
investigate special techniques. A numerical technique known as the “conjugate-direction
method” works well for all values of m and is our subject here. As with most simultaneous
equation solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. And if n and m are too large to allow enough iterations, the iterative methods
can be interrupted at any stage, the partial result often proving useful. Whether or not a
partial result actually is useful is the subject of much research; naturally, the results vary
from one application to the next.

2.3.1 Sign convention

On the last day of the survey, a storm blew up, the sea got rough, and the receivers drifted
further downwind. The data recorded that day had a larger than usual difference from that
predicted by the final model. We could call (d − Fm) the experimental error. (Here d
is data, m is model parameters, and F is their linear relation).

The alternate view is that our theory was too simple. It lacked model parameters for the

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 45

waves and the drifting cables. Because of this model oversimplification we had a modeling
error of the opposite polarity (Fm− d).

A strong experimentalist prefers to think of the error as experimental error, something
for him or her to work out. Likewise a strong analyst likes to think of the error as a
theoretical problem. (Weaker investigators might be inclined to take the opposite view.)

Regardless of the above, and opposite to common practice, I define the sign convention
for the error (or residual) as (Fm − d). When we choose this sign convention, our hazard
for analysis errors will be reduced because F is often complicated and formed by combining
many parts.

Beginners often feel disappointment when the data does not fit the model very well.
They see it as a defect in the data instead of an opportunity to design a stronger theory.

2.3.2 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector given by

residual = transform model space − data space (2.42)
r

=

F

 x

 −

d

(2.43)

A contour plot is based on an altitude function of space. The altitude is the dot
product r ·r. By finding the lowest altitude, we are driving the residual vector r as close as
we can to zero. If the residual vector r reaches zero, then we have solved the simultaneous
equations d = Fx. In a two-dimensional world the vector x has two components, (x1, x2).
A contour is a curve of constant r · r in (x1, x2)-space. These contours have a statistical
interpretation as contours of uncertainty in (x1, x2), with measurement errors in d.

Let us see how a random search-direction can be used to reduce the residual 0 ≈ r =
Fx−d. Let ∆x be an abstract vector with the same number of components as the solution
x, and let ∆x contain arbitrary or random numbers. We add an unknown quantity α of
vector ∆x to the vector x, and thereby create xnew:

xnew = x + α∆x (2.44)

This gives a new residual:

rnew = F xnew − d (2.45)
rnew = F(x + α∆x)− d (2.46)

rnew = r + α∆r = (Fx− d) + αF∆x (2.47)

which defines ∆r = F∆x.

46 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Next we adjust α to minimize the dot product: rnew · rnew

(r + α∆r) · (r + α∆r) = r · r + 2α(r ·∆r) + α2∆r ·∆r (2.48)

Set to zero its derivative with respect to α using the chain rule

0 = (r + α∆r) ·∆r + ∆r · (r + α∆r) = 2(r + α∆r) ·∆r (2.49)

which says that the new residual rnew = r + α∆r is perpendicular to the “fitting function”
∆r. Solving gives the required value of α.

α = − (r ·∆r)
(∆r ·∆r)

(2.50)

A “computation template” for the method of random directions is

r ←− Fx− d
iterate {

∆x ←− random numbers
∆r ←− F ∆x
α ←− −(r ·∆r)/(∆r ·∆r)
x ←− x + α∆x
r ←− r + α∆r
}

A nice thing about the method of random directions is that you do not need to know the
adjoint operator F′.

In practice, random directions are rarely used. It is more common to use the gradient
direction than a random direction. Notice that a vector of the size of ∆x is

g = F′r (2.51)

Notice also that this vector can be found by taking the gradient of the size of the residuals:

∂

∂x′
r · r =

∂

∂x′
(x′ F′ − d′) (Fx − d) = F′ r (2.52)

Choosing ∆x to be the gradient vector ∆x = g = F′r is called “the method of steepest
descent.”

Starting from a model x = m (which may be zero), below is a template of pseudocode
for minimizing the residual 0 ≈ r = Fx− d by the steepest-descent method:

r ←− Fx− d
iterate {

∆x ←− F′ r
∆r ←− F ∆x
α ←− −(r ·∆r)/(∆r ·∆r)
x ←− x + α∆x
r ←− r + α∆r
}

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 47

2.3.3 Null space and iterative methods

In applications where we fit d ≈ Fx, there might exist a vector (or a family of vectors)
defined by the condition 0 = Fxnull. This family is called a null space. For example, if the
operator F is a time derivative, then the null space is the constant function; if the operator
is a second derivative, then the null space has two components, a constant function and a
linear function, or combinations of them. The null space is a family of model components
that have no effect on the data.

When we use the steepest-descent method, we iteratively find solutions by this updating:

xi+1 = xi + α∆x (2.53)
xi+1 = xi + αF′r (2.54)
xi+1 = xi + αF′(Fx− d) (2.55)

After we have iterated to convergence, the gradient ∆x vanishes as does F′(Fx−d). Thus,
an iterative solver gets the same solution as the long-winded theory leading to equation
(2.30).

Suppose that by adding a huge amount of xnull, we now change x and continue iterating.
Notice that ∆x remains zero because Fxnull vanishes. Thus we conclude that any null space
in the initial guess x0 will remain there unaffected by the gradient-descent process.

Linear algebra theory enables us to dig up the entire null space should we so desire. On
the other hand, the computer demands might be vast. Even the memory for holding the
many x vectors could be prohibitive. A much simpler and more practical goal is to find out
if the null space has any members, and if so, to view some of them. To try to see a member
of the null space, we take two starting guesses and we run our iterative solver for each of
them. If the two solutions, x1 and x2, are the same, there is no null space. If the solutions
differ, the difference is a member of the null space. Let us see why: Suppose after iterating
to minimum residual we find

r1 = Fx1 − d (2.56)
r2 = Fx2 − d (2.57)

We know that the residual squared is a convex quadratic function of the unknown x. Math-
ematically that means the minimum value is unique, so r1 = r2. Subtracting we find
0 = r1− r2 = F(x1−x2) proving that x1−x2 is a model in the null space. Adding x1−x2

to any to any model x will not change the theoretical data. Are you having trouble visual-
izing r being unique, but x not being unique? Imagine that r happens to be independent
of one of the components of x. That component is nonunique. More generally, it is some
linear combination of components of x that r is independent of.

A practical way to learn about the existence of null spaces and their general appearance
is simply to try gradient-descent methods beginning from various different starting
guesses.

“Did I fail to run my iterative solver long enough?” is a question you might have. If two
residuals from two starting solutions are not equal, r1 6= r2, then you should be running
your solver through more iterations.

48 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

If two different starting solutions produce two different residuals, then you didn’t run
your solver through enough iterations.

2.3.4 Why steepest descent is so slow

Before we can understand why the conjugate-direction method is so fast, we need to
see why the steepest-descent method is so slow. Imagine yourself sitting on the edge of
a circular bowl. If you jump off the rim, you’ll slide straight to the bottom at the center.
Now imagine an ellipsoidal bowl of very large ellipticity. As you jump off the rim, you’ll
first move in the direction of the gradient. This is not towards the bottom at the center of
the ellipse (unless you were sitting on the major or minor axis).

We can formalize the situation. A parametric equation for a line is x = xold + α∆x
where α is the parameter for moving on the line. The process of selecting α is called “line
search.” Think of a two-dimensional example where the vector of unknowns x has just
two components, x1 and x2. Then the size of the residual vector r · r can be displayed
with a contour plot in the plane of (x1, x2). Our ellipsoidal bowl has ellipsoidal contours
of constant altitude. As we move in a line across this space by adjusting α, equation(2.48)
gives our altitude. This equation has a unique minimum because it is a parabola in α. As
we approach the minimum, our trajectory becomes tangential to a contour line in (x1, x2)-
space. This is where we stop. Now we compute our new residual r and we compute the
new gradient ∆x = g = F′r. OK, we are ready for the next slide down. When we turn
ourselves from ”parallel to a contour line” to the direction of ∆x which is ”perpendicular
to that contour”, we are turning 90◦. Our path to the bottom of the bowl will be made
of many segments, each turning 90◦ from the previous. We will need an infinite number of
such steps to reach the bottom. It happens that the amazing conjugate-direction method
would reach the bottom in just two jumps (because (x1, x2) is a two dimensional space.)

2.3.5 Conjugate direction

In the conjugate-direction method, not a line, but rather a plane, is searched. A plane
is made from an arbitrary linear combination of two vectors. One vector will be chosen to
be the gradient vector, say g. The other vector will be chosen to be the previous descent
step vector, say s = xj−xj−1. Instead of αg we need a linear combination, say αg+βs. For
minimizing quadratic functions the plane search requires only the solution of a two-by-two
set of linear equations for α and β. The equations will be specified here along with the
program. (For nonquadratic functions a plane search is considered intractable, whereas a
line search proceeds by bisection.)

For use in linear problems, the conjugate-direction method described in this book fol-
lows an identical path with the more well-known conjugate-gradient method. We use the
conjugate-direction method for convenience in exposition and programming.

The simple form of the conjugate-direction algorithm covered here is a sequence of steps.
In each step the minimum is found in the plane given by two vectors: the gradient vector
and the vector of the previous step.

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 49

Given the linear operator F and a generator of solution steps (random in the case of
random directions or gradient in the case of steepest descent), we can construct an optimally
convergent iteration process, which finds the solution in no more than n steps, where n is
the size of the problem. This result should not be surprising. If F is represented by a
full matrix, then the cost of direct inversion is proportional to n3, and the cost of matrix
multiplication is n2. Each step of an iterative method boils down to a matrix multiplication.
Therefore, we need at least n steps to arrive at the exact solution. Two circumstances make
large-scale optimization practical. First, for sparse convolution matrices the cost of matrix
multiplication is n instead of n2. Second, we can often find a reasonably good solution after
a limited number of iterations. If both these conditions are met, the cost of optimization
grows linearly with n, which is a practical rate even for very large problems.

Fourier-transformed variables are often capitalized. This convention will be helpful
here, so in this subsection only, we capitalize vectors transformed by the F matrix. As
everywhere, a matrix such as F is printed in boldface type but in this subsection, vectors
are not printed in boldface print. Thus we define the solution, the solution step (from one
iteration to the next), and the gradient by

X = F x solution (2.58)
Sj = F sj solution step (2.59)
Gj = F gj solution gradient (2.60)

A linear combination in solution space, say s + g, corresponds to S + G in the conjugate
space, because S + G = Fs + Fg = F(s + g). According to equation (2.43), the residual is
the theoretical data minus the observed data.

R = Fx − D = X − D (2.61)

The solution x is obtained by a succession of steps sj , say

x = s1 + s2 + s3 + · · · (2.62)

The last stage of each iteration is to update the solution and the residual:

solution update : x ← x + s (2.63)
residual update : R ← R + S (2.64)

The gradient vector g is a vector with the same number of components as the solution
vector x. A vector with this number of components is

g = F′ R = gradient (2.65)
G = F g = conjugate gradient (2.66)

The gradient g in the transformed space is G, also known as the conjugate gradient.

The minimization (2.48) is now generalized to scan not only the line with α, but simul-
taneously another line with β. The combination of the two lines is a plane:

Q(α, β) = (R + αG + βS) · (R + αG + βS) (2.67)

50 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

The minimum is found at ∂Q/∂α = 0 and ∂Q/∂β = 0, namely,

0 = G · (R + αG + βS) (2.68)

0 = S · (R + αG + βS) (2.69)

The solution is[
α
β

]
=

−1
(G ·G)(S · S)− (G · S)2

[
(S · S) −(S ·G)
−(G · S) (G ·G)

] [
(G ·R)
(S ·R)

]
(2.70)

This may look complicated. The steepest descent method requires us to compute only
the two dot products r ·∆r and ∆r ·∆r while equation (2.67) contains five dot products,
but the extra trouble is well worth while because the “conjugate direction” is such a much
better direction than the gradient direction.

The many applications in this book all need to find α and β with (2.70) and then
update the solution with (2.63) and update the residual with (2.64). Thus we package these
activities in a subroutine named cgstep. To use that subroutine we will have a computation
template like we had for steepest descents, except that we will have the repetitive work
done by subroutine cgstep. This template (or pseudocode) for minimizing the residual
0 ≈ r = Fx− d by the conjugate-direction method is

r ←− Fx− d
iterate {

∆x ←− F′ r
∆r ←− F ∆x
(x, r) ←− cgstep(x,∆x, r,∆r)
}

where the subroutine cgstep() remembers the previous iteration and works out the step
size and adds in the proper proportion of the ∆x of the previous step.

2.3.6 Routine for one step of conjugate-direction descent

The conjugate vectors G and S in the program are denoted by gg and ss. The inner part
of the conjugate-direction task is in function cgstep().

Observe the cgstep() function has a logical parameter called forget. This parameter
does not need to be input. In the normal course of things, forget will be true on the first
iteration and false on subsequent iterations. This refers to the fact that on the first iteration,
there is no previous step, so the conjugate direction method is reduced to the steepest
descent method. At any iteration, however, you have the option to set forget=true which
amounts to restarting the calculation from the current location, something we rarely find
reason to do.

2.3.7 A basic solver program

There are many different methods for iterative least-square estimation some of which will
be discussed later in this book. The conjugate-gradient (CG) family (including the first

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 51

filt/lib/cgstep.c

51 i f (f o r g e t) {
52 for (i = 0 ; i < nx ; i++) S [i] = 0 . ;
53 for (i = 0 ; i < ny ; i++) Ss [i] = 0 . ;
54 beta = 0 . 0 ;
55 a l f a = cb l a s d sdo t (ny , gg , 1 , gg , 1) ;
56 i f (a l f a <= 0 .) return ;
57 a l f a = − cb l a s d sdo t (ny , gg , 1 , rr , 1) / a l f a ;
58 } else {
59 /∗ search p lane by s o l v i n g 2−by−2
60 G . (R − G∗ a l f a − S∗ be ta) = 0
61 S . (R − G∗ a l f a − S∗ be ta) = 0 ∗/
62 gdg = cb l a s d sdo t (ny , gg , 1 , gg , 1) ;
63 sds = cb l a s d sdo t (ny , Ss , 1 , Ss , 1) ;
64 gds = cb l a s d sdo t (ny , gg , 1 , Ss , 1) ;
65 i f (gdg == 0 . | | sds == 0 .) return ;
66 determ = 1.0 − (gds/gdg)∗ (gds/ sds) ;
67 i f (determ > EPSILON) determ ∗= gdg ∗ sds ;
68 else determ = gdg ∗ sds ∗ EPSILON;
69 gdr = − cb l a s d sdo t (ny , gg , 1 , rr , 1) ;
70 sdr = − cb l a s d sdo t (ny , Ss , 1 , rr , 1) ;
71 a l f a = (sds ∗ gdr − gds ∗ sdr) / determ ;
72 beta = (−gds ∗ gdr + gdg ∗ sdr) / determ ;
73 }
74 c b l a s s s c a l (nx , beta , S , 1) ;
75 cb la s saxpy (nx , a l f a , g , 1 , S , 1) ;
76

77 c b l a s s s c a l (ny , beta , Ss , 1) ;
78 cb la s saxpy (ny , a l f a , gg , 1 , Ss , 1) ;
79

80 for (i = 0 ; i < nx ; i++) {
81 x [i] += S [i] ;
82 }
83 for (i = 0 ; i < ny ; i++) {
84 r r [i] += Ss [i] ;
85 }

52 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

order conjugate-direction method described above) share the property that theoretically
they achieve the solution in n iterations, where n is the number of unknowns. The various
CG methods differ in their numerical errors, memory required, adaptability to non-linear
optimization, and their requirements on accuracy of the adjoint. What we do in this section
is to show you the generic interface.

None of us is an expert in both geophysics and in optimization theory (OT), yet we need
to handle both. We would like to have each group write its own code with a relatively easy
interface. The problem is that the OT codes must invoke the physical operators yet the
OT codes should not need to deal with all the data and parameters needed by the physical
operators.

In other words, if a practitioner decides to swap one solver for another, the only thing
needed is the name of the new solver.

The operator entrance is for the geophysicist, who formulates the estimation problem.
The solver entrance is for the specialist in numerical algebra, who designs a new optimization
method. The C programming language allows us to achieve this design goal by means of
generic function interfaces.

A basic solver is tinysolver.

The two most important arguments in tinysolver() are the operator function Fop,
which is defined by the interface from Chapter 1, and the stepper function stepper, which
implements one step of an iterative estimation. For example, a practitioner who choses to
use our new cgstep() on page 51 for iterative solving the operator matmult on the current
page would write the call

tinysolver (matmult lop, cgstep, ...

so while you are reading the tinysolver module, you should visualize the Fop() function
as being matmult lop, and you should visualize the stepper() function as being cgstep.

The other required parameters to tinysolver() are d (the data we want to fit), m (the
model we want to estimate), and niter (the maximum number of iterations). There are
also a couple of optional arguments. For example, m0 is the starting guess for the model.
If this parameter is omitted, the model is initialized to zero. To output the final residual
vector, we include a parameter called resd, which is optional as well. We will watch how
the list of optional parameters to the generic solver routine grows as we attack more and
more complex problems in later chapters.

2.3.8 Test case: solving some simultaneous equations

Now we assemble a module cgtest for solving simultaneous equations. Starting with the
conjugate-direction module cgstep on page 51 we insert the module matmult on page 4 as
the linear operator.

Below shows the solution to 5 × 4 set of simultaneous equations. Observe that the
“exact” solution is obtained in the last step. Because the data and answers are integers, it
is quick to check the result manually.

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 53

filt/lib/tinysolver.c

23 void s f t i n y s o l v e r (s f o p e r a t o r Fop /∗ l i n e a r opera tor ∗/ ,
24 s f s o l v e r s t e p s tepper /∗ s t e pp ing func t i on ∗/ ,
25 int nm /∗ s i z e o f model ∗/ ,
26 int nd /∗ s i z e o f data ∗/ ,
27 f loat ∗ m /∗ es t imated model ∗/ ,
28 const f loat ∗ m0 /∗ s t a r t i n g model ∗/ ,
29 const f loat ∗ d /∗ data ∗/ ,
30 int n i t e r /∗ i t e r a t i o n s ∗/)
31 /∗< Generic l i n e a r s o l v e r . So l v e s oper{x} =˜ dat >∗/
32 {
33 int i , i t e r ;
34 f loat ∗g , ∗ rr , ∗gg ;
35

36 g = s f f l o a t a l l o c (nm) ;
37 r r = s f f l o a t a l l o c (nd) ;
38 gg = s f f l o a t a l l o c (nd) ;
39

40 for (i =0; i < nd ; i++) r r [i] = − d [i] ;
41 i f (NULL==m0) {
42 for (i =0; i < nm; i++) m[i] = 0 . 0 ;
43 } else {
44 for (i =0; i < nm; i++) m[i] = m0[i] ;
45 Fop (f a l s e , true , nm, nd , m, r r) ;
46 }
47

48 for (i t e r =0; i t e r < n i t e r ; i t e r++) {
49 Fop (true , f a l s e , nm, nd , g , r r) ;
50 Fop (f a l s e , f a l s e , nm, nd , g , gg) ;
51

52 s t epper (f a l s e , nm, nd , m, g , rr , gg) ;
53 }
54

55 f r e e (g) ;
56 f r e e (r r) ;
57 f r e e (gg) ;

54 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

user/fomels/cgtest.c

23 void c g t e s t (int nx , int ny , f loat ∗x ,
24 const f loat ∗yy , f loat ∗∗ f f f , int n i t e r)
25 /∗< t e s t i n g con juga te g r ad i en t s wi th matrix mu l t i p l i c a t i o n >∗/
26 {
27 matmult in i t (f f f) ;
28 s f t i n y s o l v e r (matmult lop , s f c g s t ep ,
29 nx , ny , x , NULL, yy , n i t e r) ;
30 s f c g s t e p c l o s e () ;
31 }

d transpose

3.00 3.00 5.00 7.00 9.00

F transpose

1.00 1.00 1.00 1.00 1.00

1.00 2.00 3.00 4.00 5.00

1.00 0.00 1.00 0.00 1.00

0.00 0.00 0.00 1.00 1.00

for iter = 0, 4

x 0.43457383 1.56124675 0.27362058 0.25752524

res -0.73055887 0.55706739 0.39193487 -0.06291389 -0.22804642

x 0.51313990 1.38677299 0.87905121 0.56870615

res -0.22103602 0.28668585 0.55251014 -0.37106210 -0.10523783

x 0.39144871 1.24044561 1.08974111 1.46199656

res -0.27836466 -0.12766013 0.20252672 -0.18477242 0.14541438

x 1.00001287 1.00004792 1.00000811 2.00000739

res 0.00006878 0.00010860 0.00016473 0.00021179 0.00026788

x 1.00000024 0.99999994 0.99999994 2.00000024

res -0.00000001 -0.00000001 0.00000001 0.00000002 -0.00000001

EXERCISES:

1 One way to remove a mean value m from signal s(t) = s is with the fitting goal 0 ≈ s−m.
What operator matrix is involved?

2 What linear operator subroutine from Chapter 1 can be used for finding the mean?

3 How many CD iterations should be required to get the exact mean value?

4 Write a mathematical expression for finding the mean by the CG method.

2.4 INVERSE NMO STACK

To illustrate an example of solving a huge set of simultaneous equations without ever writing
down the matrix of coefficients we consider how back projection can be upgraded towards
inversion in the application called moveout and stack.

2.4. INVERSE NMO STACK 55

Figure 2.3: Top is a model trace m.
Next are the synthetic data traces,
d = Mm. Then, labeled niter=0
is the stack, a result of processing
by adjoint modeling. Increasing val-
ues of niter show x as a function
of iteration count in the fitting goal
d ≈ Mm. (Carlos Cunha-Filho)
lsq/invstack invstack

The seismograms at the bottom of Figure 2.3 show the first four iterations of conjugate-
direction inversion. You see the original rectangle-shaped waveform returning as the it-
erations proceed. Notice also on the stack that the early and late events have unequal
amplitudes, but after enough iterations they are equal, as they began. Mathematically, we
can denote the top trace as the model m, the synthetic data signals as d = Mm, and the
stack as M′d. The conjugate-gradient algorithm optimizes the fitting goal d ≈ Mx by
variation of x, and the figure shows x converging to m. Because there are 256 unknowns
in m, it is gratifying to see good convergence occurring after the first four iterations. The
fitting is done by module invstack, which is just like cgtest on page 54 except that the
matrix-multiplication operator matmult on page 4 has been replaced by imospray. Study-
ing the program, you can deduce that, except for a scale factor, the output at niter=0 is
identical to the stack M′d. All the signals in Figure 2.3 are intrinsically the same scale.

filt/proc/invstack.c

24 void i nv s tack (int nt , f loat ∗model , int nx , const f loat ∗ gather ,
25 f loat t0 , f loat x0 ,
26 f loat dt , f loat dx , f loat slow , int n i t e r)
27 /∗< NMO stack by inv e r s e o f forward modeling ∗/
28 {
29 imo sp ray in i t (slow , x0 , dx , t0 , dt , nt , nx) ;
30 s f t i n y s o l v e r (imospray lop , s f c g s t ep ,
31 nt , nt∗nx , model , NULL, gather , n i t e r) ;
32 s f c g s t e p c l o s e () ;
33 imospray c l o s e () ; /∗ garbage c o l l e c t i o n ∗/
34 }

This simple inversion is inexpensive. Has anything been gained over conventional stack?
First, though we used nearest-neighbor interpolation, we managed to preserve the spec-
trum of the input, apparently all the way to the Nyquist frequency. Second, we preserved
the true amplitude scale without ever bothering to think about (1) dividing by the number
of contributing traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

56 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for
inversion.

2.5 THE WORLD OF CONJUGATE GRADIENTS

Nonlinearity arises in two ways: First, theoretical data might be a nonlinear function of the
model parameters. Second, observed data could contain imperfections that force us to use
nonlinear methods of statistical estimation.

2.5.1 Physical nonlinearity

When standard methods of physics relate theoretical data dtheor to model parameters m,
they often use a nonlinear relation, say dtheor = f(m). The power-series approach then
leads to representing theoretical data as

dtheor = f(m0 + ∆m) ≈ f(m0) + F∆m (2.71)

where F is the matrix of partial derivatives of data values by model parameters, say
∂di/∂mj , evaluated at m0. The theoretical data dtheor minus the observed data dobs is
the residual we minimize.

0 ≈ dtheor − dobs = F∆m + [f(m0)− dobs] (2.72)
rnew = F∆m + rold (2.73)

It is worth noticing that the residual updating (2.73) in a nonlinear problem is the same as
that in a linear problem (2.47). If you make a large step ∆m, however, the new residual
will be different from that expected by (2.73). Thus you should always re-evaluate the
residual vector at the new location, and if you are reasonably cautious, you should be sure
the residual norm has actually decreased before you accept a large step.

The pathway of inversion with physical nonlinearity is well developed in the academic
literature and Bill Symes at Rice University has a particularly active group.

2.5.2 Statistical nonlinearity

The data itself often has noise bursts or gaps, and we will see later in Chapter ?? that this
leads us to readjusting the weighting function. In principle, we should fix the weighting
function and solve the problem. Then we should revise the weighting function and solve the
problem again. In practice we find it convenient to change the weighting function during
the optimization descent. Failure is possible when the weighting function is changed too
rapidly or drastically. (The proper way to solve this problem is with robust estimators.
Unfortunately, I do not yet have an all-purpose robust solver. Thus we are (temporarily, I
hope) reduced to using crude reweighted least-squares methods. Sometimes they work and
sometimes they don’t.)

2.5. THE WORLD OF CONJUGATE GRADIENTS 57

2.5.3 Coding nonlinear fitting problems

We can solve nonlinear least-squares problems in about the same way as we do iteratively
reweighted ones. A simple adaptation of a linear method gives us a nonlinear solver if the
residual is recomputed at each iteration. Omitting the weighting function (for simplicity)
the template is:

iterate {
r ←− f(m)− d
Define F = ∂d/∂m.
∆m ←− F′ r
∆r ←− F ∆m
(m, r) ←− step(m, r,∆m,∆r)
}

A formal theory for the optimization exists, but we are not using it here. The assumption
we make is that the step size will be small, so that familiar line-search and plane-search
approximations should succeed in reducing the residual. Unfortunately this assumption is
not reliable. What we should do is test that the residual really does decrease, and if it does
not we should revert to steepest descent with a smaller step size. Perhaps we should test
an incremental variation on the status quo: where inside solver on page 53, we check to
see if the residual diminished in the previous step, and if it did not, restart the iteration
(choose the current step to be steepest descent instead of CD). I am planning to work with
some mathematicians to gain experience with other solvers.

Experience shows that nonlinear problems have many pitfalls. Start with a linear prob-
lem, add a minor physical improvement or unnormal noise, and the problem becomes non-
linear and probably has another solution far from anything reasonable. When solving such a
nonlinear problem, we cannot arbitrarily begin from zero as we do with linear problems. We
must choose a reasonable starting guess, and then move in a stable and controlled manner.
A simple solution is to begin with several steps of steepest descent and then switch over to
do some more steps of CD. Avoiding CD in earlier iterations can avoid instability. Strong
linear “regularization” discussed later can also reduce the effect of nonlinearity.

2.5.4 Standard methods

The conjugate-direction method is really a family of methods. Mathematically, where there
are n unknowns, these algorithms all converge to the answer in n (or fewer) steps. The
various methods differ in numerical accuracy, treatment of underdetermined systems, accu-
racy in treating ill-conditioned systems, space requirements, and numbers of dot products.
Technically, the method of CD used in the cgstep module on page 51 is not the conjugate-
gradient method itself, but is equivalent to it. This method is more properly called the
conjugate-direction method with a memory of one step. I chose this method for its clar-
ity and flexibility. If you would like a free introduction and summary of conjugate-gradient
methods, I particularly recommend An Introduction to Conjugate Gradient Method Without
Agonizing Pain by Jonathon Shewchuk, which you can download1.

1http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-gradient.ps

http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-gradient.ps

58 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

I suggest you skip over the remainder of this section and return after you have seen
many examples and have developed some expertise, and have some technical problems.

The conjugate-gradient method was introduced by Hestenes and Stiefel in 1952.
To read the standard literature and relate it to this book, you should first realize that when
I write fitting goals like

0 ≈ W(Fm− d) (2.74)
0 ≈ Am, (2.75)

they are equivalent to minimizing the quadratic form:

m : min
m

Q(m) = (m′F′ − d′)W′W(Fm− d) + m′A′Am (2.76)

The optimization theory (OT) literature starts from a minimization of

x : min
x

Q(x) = x′Hx− b′x (2.77)

To relate equation (2.76) to (2.77) we expand the parentheses in (2.76) and abandon the
constant term d′d. Then gather the quadratic term in m and the linear term in m. There
are two terms linear in m that are transposes of each other. They are scalars so they are
equal. Thus, to invoke “standard methods,” you take your problem-formulation operators
F, W, A and create two modules that apply the operators

H = F′W′WF + A′A (2.78)
b′ = 2(F′W′Wd)′ (2.79)

The operators H and b′ operate on model space. Standard procedures do not require their
adjoints because H is its own adjoint and b′ reduces model space to a scalar. You can see
that computing H and b′ requires one temporary space the size of data space (whereas
cgstep requires two).

When people have trouble with conjugate gradients or conjugate directions, I always
refer them to the Paige and Saunders algorithm LSQR. Methods that form H explicitly
or implicitly (including both the standard literature and the book3 method) square the
condition number, that is, they are twice as susceptible to rounding error as is LSQR.

2.5.5 Understanding CG magic and advanced methods

This section includes Sergey Fomel’s explanation on the “magic” convergence properties of
the conjugate-direction methods. It also presents a classic version of conjugate gradients,
which can be found in numerous books on least-square optimization.

The key idea for constructing an optimal iteration is to update the solution at each
step in the direction, composed by a linear combination of the current direction and all
previous solution steps. To see why this is a helpful idea, let us consider first the method
of random directions. Substituting expression (2.50) into formula (2.48), we see that the
residual power decreases at each step by

r · r− rnew · rnew =
(r ·∆r)2

(∆r ·∆r)
. (2.80)

2.5. THE WORLD OF CONJUGATE GRADIENTS 59

To achieve a better convergence, we need to maximize the right hand side of (2.80). Let
us define a new solution step snew as a combination of the current direction ∆x and the
previous step s, as follows:

snew = ∆x + βs . (2.81)

The solution update is then defined as

xnew = x + αsnew . (2.82)

The formula for α (2.50) still holds, because we have preserved in (2.82) the form of equation
(2.44) and just replaced ∆x with snew. In fact, formula (2.50) can be simplified a little bit.
From (2.49), we know that rnew is orthogonal to ∆r = Fsnew. Likewise, r should be
orthogonal to Fs (recall that r was rnew and s was snew at the previous iteration). We can
conclude that

(r ·∆r) = (r · Fsnew) = (r · F∆x) + β(r · Fs) = (r · F∆x) . (2.83)

Comparing (2.83) with (2.80), we can see that adding a portion of the previous step to the
current direction does not change the value of the numerator in expression (2.80). However,
the value of the denominator can be changed. Minimizing the denominator maximizes the
residual increase at each step and leads to a faster convergence. This is the denominator
minimization that constrains the value of the adjustable coefficient β in (2.81).

The procedure for finding β is completely analogous to the derivation of formula (2.50).
We start with expanding the dot product (∆r ·∆r):

(Fsnew · Fsnew) = F∆x · F∆x + 2β(F∆x · Fs) + β2 Fs · Fs . (2.84)

Differentiating with respect to β and setting the derivative to zero, we find that

0 = 2(F∆x + βFs) · Fs . (2.85)

Equation (2.85) states that the conjugate direction Fsnew is orthogonal (perpendicular) to
the previous conjugate direction Fs. It also defines the value of β as

β = −(F∆x · Fs)
(Fs · Fs)

. (2.86)

Can we do even better? The positive quantity that we minimized in (2.84) decreased
by

F∆x · F∆x− Fsnew · Fsnew =
(F∆x · Fs)2

(Fs · Fs)
(2.87)

Can we decrease it further by adding another previous step? In general, the answer is
positive, and it defines the method of conjugate directions. I will state this result without
a formal proof (which uses the method of mathematical induction).

• If the new step is composed of the current direction and a combination of all the
previous steps:

sn = ∆xn +
∑
i<n

βisi , (2.88)

then the optimal convergence is achieved when

βi = −(F∆xn · Fsi)
(Fsi · Fsi)

. (2.89)

60 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

• The new conjugate direction is orthogonal to the previous ones:

(Fsn · Fsi) = 0 for all i < n (2.90)

To see why this is an optimally convergent method, it is sufficient to notice that vectors
Fsi form an orthogonal basis in the data space. The vector from the current residual to the
smallest residual also belongs to that space. If the data size is n, then n basis components
(at most) are required to represent this vector, hence no more then n conjugate-direction
steps are required to find the solution.

The computation template for the method of conjugate directions is

r ←− Fx− d
iterate {

∆x ←− random numbers
s ←− ∆x +

∑
i<n βisi where βi = − (F∆x·Fsi)

(Fsi·Fsi)

∆r ←− Fs
α ←− −(r ·∆r)/(∆r ·∆r)
x ←− x + αs
r ←− r + α∆r
}

What happens if we “feed” the method with gradient directions instead of just random
directions? It turns out that in this case we need to remember from all the previous steps
si only the one that immediately precedes the current iteration. Let us derive a formal
proof of that fact as well as some other useful formulas related to the method of conjugate
gradients.

According to formula (2.49), the new residual rnew is orthogonal to the conjugate direc-
tion ∆r = Fsnew. According to the orthogonality condition (2.90), it is also orthogonal to
all the previous conjugate directions. Defining ∆x equal to the gradient F′r and applying
the definition of the adjoint operator, it is convenient to rewrite the orthogonality condition
in the form

0 = (rn · Fsi) = (F′rn · si) = (∆xn+1 · si) for all i ≤ n (2.91)

According to formula (2.88), each solution step si is just a linear combination of the gradient
∆xi and the previous solution steps. We deduce from formula (2.91) that

0 = (∆xn · si) = (∆xn ·∆xi) for all i < n (2.92)

In other words, in the method of conjugate gradients, the current gradient direction is
always orthogonal to all the previous directions. The iteration process constructs not only
an orthogonal basis in the data space but also an orthogonal basis in the model space,
composed of the gradient directions.

Now let us take a closer look at formula (2.89). Note that Fsi is simply related to the
residual step at i-th iteration:

Fsi =
ri − ri−1

αi
. (2.93)

2.6. REFERENCES 61

Substituting relationship (2.93) into formula (2.89) and applying again the definition of the
adjoint operator, we obtain

βi = −F∆xn · (ri − ri−1)
αi(Fsi · Fsi)

= −∆xn · F′(ri − ri−1)
αi(Fsi · Fsi)

= −∆xn · (∆xi+1 −∆xi)
αi(Fsi · Fsi)

(2.94)

Since the gradients ∆xi are orthogonal to each other, the dot product in the numerator is
equal to zero unless i = n − 1. It means that only the immediately preceding step sn−1

contributes to the definition of the new solution direction sn in (2.88). This is precisely the
property of the conjugate gradient method we wanted to prove.

To simplify formula (2.94), rewrite formula (2.50) as

αi = −(ri−1 · F∆xi)
(Fsi · Fsi)

= −(F′ri−1 ·∆xi)
(Fsi · Fsi)

= −(∆xi ·∆xi)
(Fsi · Fsi)

(2.95)

Substituting (2.95) into (2.94), we obtain

β = − (∆xn ·∆xn)
αn−1(Fsn−1 · Fsn−1)

=
(∆xn ·∆xn)

(∆xn−1 ·∆xn−1)
. (2.96)

The computation template for the method of conjugate gradients is then

r ←− Fx− d
β ←− 0
iterate {

∆x ←− F′r
if not the first iteration β ←− (∆x·∆x)

γ

γ ←− (∆x ·∆x)
s ←− ∆x + βs
∆r ←− Fs
α ←− −γ/(∆r ·∆r)
x ←− x + αs
r ←− r + α∆r
}

2.6 REFERENCES

Hestenes, M.R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear
systems: J. Res. Natl. Bur. Stand., 49, 409-436.

Paige, C.C., and Saunders, M.A., 1982a, LSQR: an algorithm for sparse linear equations
and sparse least squares: Assn. Comp. Mach. Trans. Mathematical Software, 8, 43-71.

Paige, C.C., and Saunders, M.A., 1982b, Algorithm 583, LSQR: sparse linear equations
and least squares problems: Assn. Comp. Mach. Trans. Mathematical Software, 8,
195-209.

62 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Chapter 3

Empty bins and inverse
interpolation

Let us review the big picture. In Chapter 1 we developed adjoints and in Chapter 2 we
developed inverse operators. Logically, correct solutions come only through inversion. Real
life, however, seems nearly the opposite. This is puzzling but intriguing.

Every time you fill your car with gasoline, it derives much more from the adjoint than
from inversion. I refer to the fact that “practical seismic data processing” relates much
more to the use of adjoints than of inverses. It has been widely known for about the last
15 years that medical imaging and all basic image creation methods are like this. It might
seem that an easy path to fame and profit would be to introduce the notion of inversion,
but it is not that easy. Both cost and result quality enter the picture.

First consider cost. For simplicity, consider a data space with N values and a model (or
image) space of the same size. The computational cost of applying a dense adjoint operator
increases in direct proportion to the number of elements in the matrix, in this case N2. To
achieve the minimum discrepancy between theoretical data and observed data (inversion)
theoretically requires N iterations raising the cost to N3.

Consider an image of size m ×m = N . Continuing, for simplicity, to assume a dense
matrix of relations between model and data, the cost for the adjoint is m4 whereas the cost
for inversion is m6. We’ll consider computational costs for the year 2000, but noticing that
costs go as the sixth power of the mesh size, the overall situation will not change much in
the foreseeable future. Suppose you give a stiff workout to a powerful machine; you take
an hour to invert a 4096 × 4096 matrix. The solution, a vector of 4096 components could
be laid into an image of size 64× 64 = 26 × 26 = 4096. Here is what we are looking at for
costs:

adjoint cost (m×m)2 (512× 512)2 (2929)2 236

inverse cost (m×m)3 (64× 64)3 (2626)3 236

These numbers tell us that for applications with dense operators, the biggest images that
we are likely to see coming from inversion methods are 64× 64 whereas those from adjoint
methods are 512 × 512. For comparison, the retina of your eye is comparable to your

63

64 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

computer screen at 1000×1000. We might summarize by saying that while adjoint methods
are less than perfect, inverse methods are “legally blind” :-)

http://sepwww.stanford.edu/sep/jon/family/jos/gifmovie.html holds a movie blink-
ing between Figures 3.1 and 3.2.

Figure 3.1: Jos greets Andrew,
“Welcome back Andrew” from the
Peace Corps. At a resolution of 512×
512, this picture is about the same
as the resolution as the paper it is
printed on, or the same as your view-
ing screen, if you have scaled it to
50% of screen size. iin/. 512x512

This cost analysis is oversimplified in that most applications do not require dense oper-
ators. With sparse operators, the cost advantage of adjoints is even more pronounced since
for adjoints, the cost savings of operator sparseness translate directly to real cost savings.
The situation is less favorable and much more muddy for inversion. The reason that Chapter
2 covers iterative methods and neglects exact methods is that in practice iterative methods
are not run to their theoretical completion but they run until we run out of patience.

Cost is a big part of the story, but the story has many other parts. Inversion, while
being the only logical path to the best answer, is a path littered with pitfalls. The first
pitfall is that the data is rarely able to determine a complete solution reliably. Generally
there are aspects of the image that are not learnable from the data.

In this chapter we study the simplest, most transparant example of data insufficiency.
Data exists at irregularly spaced positions in a plane. We set up a cartesian mesh and we
discover that some of the bins contain no data points. What then?

3.1 MISSING DATA IN ONE DIMENSION

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy. Specifying the filter chooses the interpolation philosophy.
Generally the filter is a roughening filter. When a roughening filter goes off the end of
smooth data, it typically produces a big end transient. Minimizing energy implies a choice
for unknown data values at the end, to minimize the transient. We will examine five cases

http://sepwww.stanford.edu/sep/jon/family/jos/gifmovie.html

3.1. MISSING DATA IN ONE DIMENSION 65

Figure 3.2: Jos greets Andrew,
“Welcome back Andrew” again. At
a resolution of 64× 64 the pixels are
clearly visible. From far the pictures
are the same. From near, examine
their glasses. iin/. 64x64

and then make some generalizations.

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy.

Let u denote an unknown (missing) value. The dataset on which the examples are
based is (· · · , u, u, 1, u, 2, 1, 2, u, u, · · ·). Theoretically we could adjust the missing u values
(each different) to minimize the energy in the unfiltered data. Those adjusted values would
obviously turn out to be all zeros. The unfiltered data is data that has been filtered by an
impulse function. To find the missing values that minimize energy out of other filters, we
can use subroutine mis1() on page 70. Figure 3.3 shows interpolation of the dataset with
(1,−1) as a roughening filter. The interpolated data matches the given data where they
overlap.

Figure 3.3: Top is given data.
Middle is given data with interpo-
lated values. Missing values seem
to be interpolated by straight lines.
Bottom shows the filter (1,−1),
whose output has minimum energy.
iin/miss1figs mlines

Figures 3.3–3.6 illustrate that the rougher the filter, the smoother the interpolated
data, and vice versa. Let us switch our attention from the residual spectrum to the residual
itself. The residual for Figure 3.3 is the slope of the signal (because the filter (1,−1) is a

66 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Figure 3.4: Top is the same input
data as in Figure 3.3. Middle is in-
terpolated. Bottom shows the fil-
ter (−1, 2,−1). The missing data
seems to be interpolated by parabo-
las. iin/miss1figs mparab

Figure 3.5: Top is the same in-
put. Middle is interpolated. Bot-
tom shows the filter (1,−3, 3,−1).
The missing data is very smooth.
It shoots upward high off the right
end of the observations, apparently
to match the data slope there.
iin/miss1figs mseis

Figure 3.6: Bottom shows the
filter (1, 1). The interpolation is
rough. Like the given data it-
self, the interpolation has much
energy at the Nyquist frequency.
But unlike the given data, it
has little zero-frequency energy.
iin/miss1figs moscil

3.1. MISSING DATA IN ONE DIMENSION 67

first derivative), and the slope is constant (uniformly distributed) along the straight lines
where the least-squares procedure is choosing signal values. So these examples confirm
the idea that the least-squares method abhors large values (because they are squared).
Thus, least squares tends to distribute residuals uniformly in both time and frequency to
the extent allowed by the constraints.

This idea helps us answer the question, what is the best filter to use? It suggests choosing
the filter to have an amplitude spectrum that is inverse to the spectrum we want for the in-
terpolated data. A systematic approach is given in chapter 6, but I offer a simple subjective
analysis here: Looking at the data, we see that all points are positive. It seems, therefore,
that the data is rich in low frequencies; thus the filter should contain something like (1,−1),
which vanishes at zero frequency. Likewise, the data seems to contain Nyquist frequency,
so the filter should contain (1, 1). The result of using the filter (1,−1) ∗ (1, 1) = (1, 0,−1)
is shown in Figure 3.7. This is my best subjective interpolation based on the idea that the
missing data should look like the given data. The interpolation and extrapolations are
so good that you can hardly guess which data values are given and which are interpolated.

Figure 3.7: Top is the same as
in Figures 3.3 to 3.6. Middle is
interpolated. Bottom shows the
filter (1, 0,−1), which comes from
the coefficients of (1,−1) ∗ (1, 1).
Both the given data and the interpo-
lated data have significant energy at
both zero and Nyquist frequencies.
iin/miss1figs mbest

3.1.1 Missing-data program

Now let us see how Figures 3.3-3.7 could have been calculated and how they were calcu-
lated. They could have been calculated with matrices, in which matrices were pulled apart
according to subscripts of known or missing data; instead I computed them with operators,
and applied only operators and their adjoints. First we inspect the matrix approach because
it is more conventional.

Matrix approach to missing data

Customarily, we have referred to data by the symbol d. Now that we are dividing the data
space into two parts, known and unknown (or missing), we will refer to this complete space
as the model (or map) space m.

There are 15 data points in Figures 3.3-3.7. Of the 15, 4 are known and 11 are missing.
Denote the known by k and the missing by u. Then the sequence of missing and known is
(u, u, u, u, k, u, k, k, k, u, u, u, u, u, u). Because I cannot print 15× 15 matrices, please allow
me to describe instead a data space of 6 values (m1,m2,m3,m4,m5,m6) with known values
only m2 and m3, that is arranged like (u, k, k, u, u, u).

68 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Our approach is to minimize the energy in the residual, which is the filtered map (model)
space. We state the fitting goals 0 ≈ Fm as

0
0
0
0
0
0
0
0

≈ r =

a1 0 0 0 0 0
a2 a1 0 0 0 0
a3 a2 a1 0 0 0
0 a3 a2 a1 0 0
0 0 a3 a2 a1 0
0 0 0 a3 a2 a1

0 0 0 0 a3 a2

0 0 0 0 0 a3

m1

m2

m3

m4

m5

m6

 (3.1)

We rearrange the above fitting goals, bringing the columns multiplying known data
values (m2 and m3) to the left, getting y = −Fkmk ≈ Fumu.

y1

y2

y3

y4

y5

y6

y7

y8

= −

0 0
a1 0
a2 a1

a3 a2

0 a3

0 0
0 0
0 0

[

m2

m3

]
≈

a1 0 0 0
a2 0 0 0
a3 0 0 0
0 a1 0 0
0 a2 a1 0
0 a3 a2 a1

0 0 a3 a2

0 0 0 a3

m1

m4

m5

m6

 (3.2)

This is the familiar form of an overdetermined system of equations y ≈ Fumu which we
could solve for mu as illustrated earlier by conjugate directions, or by a wide variety of
well-known methods.

The trouble with this matrix approach is that it is awkward to program the partitioning
of the operator into the known and missing parts, particularly if the application of the
operator uses arcane techniques, such as those used by the fast–Fourier-transform operator
or various numerical approximations to differential or partial differential operators that
depend on regular data sampling. Even for the modest convolution operator, we already
have a library of convolution programs that handle a variety of end effects, and it would
be much nicer to use the library as it is rather than recode it for all possible geometrical
arrangements of missing data values.

Note: Here I take the main goal to be the clarity of the code, not the efficiency or
accuracy of the solution. So, if your problem consumes too many resources, and if you have
many more known points than missing ones, maybe you should fit y ≈ Fumu and ignore
the suggestions below.

Operator approach to missing data

For the operator approach to the fitting goal −Fkmk ≈ Fumu we rewrite it as −Fkmk ≈
FJm where

3.1. MISSING DATA IN ONE DIMENSION 69

−Fkmk ≈

a1 0 0 0 0 0
a2 a1 0 0 0 0
a3 a2 a1 0 0 0
0 a3 a2 a1 0 0
0 0 a3 a2 a1 0
0 0 0 a3 a2 a1

0 0 0 0 a3 a2

0 0 0 0 0 a3

1
. 0
. . 0 . . .
. . . 1 . .
. . . . 1 .
. 1

m1

m2

m3

m4

m5

m6

 = FJm

(3.3)
Notice the introduction of the new diagonal matrix J, called a masking matrix or a
constraint-mask matrix because it multiplies constrained variables by zero leaving freely
adjustable variables untouched. Experience shows that a better name than “mask matrix”
is “selector matrix” because what comes out of it, that which is selected, is a less-confusing
name for it than which is rejected. With a selector matrix the whole data space seems freely
adjustable, both the missing data values and known values. We see that the CD method
does not change the known (constrained) values. In general, we derive the fitting goal (3.3)
by

0 ≈ Fm (3.4)
0 ≈ F(J + (I− J))m (3.5)
0 ≈ FJm + F(I− J)m (3.6)
0 ≈ FJm + Fmknown (3.7)

0 ≈ r = FJm + r0 (3.8)

As usual, we find a direction to go ∆m by the gradient of the residual energy.

∆m =
∂

∂m′ r′r =
(

∂

∂m′ r′
)

r =
(

∂

∂m′ (m′J′F′ + r′0)
)

r = J′F′r (3.9)

We begin the calculation with the known data values where missing data values are
replaced by zeros, namely (I − J)m. Filter this data, getting F(I − J)m, and load it into
the residual r0. With this initialization completed, we begin an iteration loop. First we
compute ∆m from equation (3.9).

∆m ←− J′F′r (3.10)

F′ applies a crosscorrelation of the filter to the residual and then J′ sets to zero any changes
proposed to known data values. Next, compute the change in residual ∆r from the proposed
change in the data ∆m.

∆r ←− FJ∆m (3.11)

This applies the filtering again. Then use the method of steepest descent (or conjugate
direction) to choose the appropriate scaling (or inclusion of previous step) of ∆m and ∆r,
and update m and r accordingly and iterate.

The subroutine to find missing data is mis1(). It assumes that zero values in the input
data correspond to missing data locations. It uses our convolution operator tcai1() on
page 9. You can also check the Index for other operators and modules.

70 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

user/gee/mis1.c

54 void mis1 (int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
55 f loat ∗xx /∗ data /model ∗/ ,
56 const bool ∗known /∗ mask f o r known data ∗/ ,
57 const char ∗ s tep /∗ s o l v e r ∗/)
58 /∗< i n t e r p o l a t e >∗/
59 {
60 switch (s tep [1]) {
61 case ’ g ’ : /∗ con juga te g r ad i en t s ∗/
62 s f s o l v e r (t c a i 1 l op , s f c g s t ep , nx , ny , xx , zero ,
63 n i t e r , ”x0” , xx , ”known” , known , ”end”) ;
64 s f c g s t e p c l o s e () ;
65 break ;
66 case ’ d ’ : /∗ con juga te d i r e c t i o n s ∗/
67 s f c d s t e p i n i t () ;
68 s f s o l v e r (t c a i 1 l op , s f cd s t ep , nx , ny , xx , zero ,
69 n i t e r , ”x0” , xx , ”known” , known , ”end”) ;
70 s f c d s t e p c l o s e () ;
71 break ;
72 default :
73 s f e r r o r (”%s : unknown step %s” , FILE , s tep) ;
74 break ;
75 }
76 }

3.2. WELLS NOT MATCHING THE SEISMIC MAP 71

I sought reference material on conjugate gradients with constraints and didn’t find any-
thing, leaving me to fear that this chapter was in error and that I had lost the magic
property of convergence in a finite number of iterations. I tested the code and it did con-
verge in a finite number of iterations. The explanation is that these constraints are almost
trivial. We pretended we had extra variables, and computed a ∆m = g for each of them.
Then we set the ∆m = g to zero, hence making no changes to anything, like as if we had
never calculated the extra ∆m’s.

EXERCISES:

1 Figures 3.3–3.6 seem to extrapolate to vanishing signals at the side boundaries. Why
is that so, and what could be done to leave the sides unconstrained in that way?

2 Show that the interpolation curve in Figure 3.4 is not parabolic as it appears, but cubic.
(hint: First show that (∇2)′∇2u = 0.)

3 Verify by a program example that the number of iterations required with simple con-
straints is the number of free parameters.

4 A signal on a uniform mesh has missing values. How should we estimate the mean?

3.2 WELLS NOT MATCHING THE SEISMIC MAP

Accurate knowledge comes from a well, but wells are expensive and far apart. Less accurate
knowledge comes from surface seismology, but this knowledge is available densely in space
and can indicate significant trends between the wells. For example, a prospective area may
contain 15 wells but 600 or more seismic stations. To choose future well locations, it is
helpful to match the known well data with the seismic data. Although the seismic data is
delightfully dense in space, it often mismatches the wells because there are systematic dif-
ferences in the nature of the measurements. These discrepancies are sometimes attributed
to velocity anisotropy. To work with such measurements, we do not need to track down
the physical model, we need only to merge the information somehow so we can appropri-
ately map the trends between wells and make a proposal for the next drill site. Here we
consider only a scalar value at each location. Take w to be a vector of 15 components, each
component being the seismic travel time to some fixed depth in a well. Likewise let s be
a 600-component vector each with the seismic travel time to that fixed depth as estimated
wholly from surface seismology. Such empirical corrections are often called “fudge fac-
tors”. An example is the Chevron oil field in Figure 3.8. The binning of the seismic data in
Figure 3.8 is not really satisfactory when we have available the techniques of missing data
estimation to fill the empty bins. Using the ideas of subroutine mis1() on page 70, we can
extend the seismic data into the empty part of the plane. We use the same principle that
we minimize the energy in the filtered map where the map must match the data where it
is known. I chose the filter A = ∇′∇ = −∇2 to be the Laplacian operator (actually, its
negative) to obtain the result in Figure 3.9.

Figure 3.9 also involves a boundary condition calculation. Many differential equa-
tions have a solution that becomes infinite at infinite distance, and in practice this means
that the largest solutions may often be found on the boundaries of the plot, exactly where

72 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Figure 3.8: Binning by data push. Left is seismic data. Right is well locations. Values in
bins are divided by numbers in bins. (Toldi) iin/chevron wellseis

Figure 3.9: Seismic binned (left) and extended (right) by minimizing energy in ∇2s.
iin/chevron misseis

3.2. WELLS NOT MATCHING THE SEISMIC MAP 73

there is the least information. To obtain a more pleasing result, I placed artificial “average”
data along the outer boundary. Each boundary point was given the value of an average of
the interior data values. The average was weighted, each weight being an inverse power of
the separation distance of the boundary point from the interior point.

Parenthetically, we notice that all the unknown interior points could be guessed by the
same method we used on the outer boundary. After some experience guessing what inverse
power would be best for the weighting functions, I do not recommend this method. Like
gravity, the forces of interpolation from the weighted sums are not blocked by intervening
objects. But the temperature in a house is not a function of temperature in its neighbor’s
house. To further isolate the more remote points, I chose weights to be the inverse fourth
power of distance.

The first job is to fill the gaps in the seismic data. We just finished doing a job like this
in one dimension. I’ll give you more computational details later. Let us call the extended
seismic data s.

Think of a map of a model space m of infinitely many hypothetical wells that must
match the real wells, where we have real wells. We must find a map that matches the wells
exactly and somehow matches the seismic information elsewhere. Let us define the vector
w as shown in Figure 3.8 so w is observed values at wells and zeros elsewhere.

Where the seismic data contains sharp bumps or streaks, we want our final earth model
to have those features. The wells cannot provide the rough features because the wells are
too far apart to provide high spatial frequencies. The well information generally conflicts
with the seismic data at low spatial frequencies because of systematic discrepancies between
the two types of measurements. Thus we must accept that m and s may differ at low spatial
frequencies (where gradient and Laplacian are small).

Our final map m would be very unconvincing if it simply jumped from a well value at
one point to a seismic value at a neighboring point. The map would contain discontinuities
around each well. Our philosophy of finding an earth model m is that our earth map
should contain no obvious “footprint” of the data acquisition (well locations). We adopt
the philosopy that the difference between the final map (extended wells) and the seismic
information x = m − s should be smooth. Thus, we seek the minimum residual r which
is the roughened difference between the seismic data s and the map m of hypothetical
omnipresent wells. With roughening operator A we fit

0 ≈ r = A(m− s) = Ax (3.12)

along with the constraint that the map should match the wells at the wells. We could write
this as 0 = (I − J)(m − w). We honor this constraint by initializing the map m = w to
the wells (where we have wells, and zero elsewhere). After we find the gradient direction to
suggest some changes to m, we simply will not allow those changes at well locations. We do
this with a mask. We apply a ”missing data selector” to the gradient. It zeros out possible
changes at well locations. Like with the goal (3.7), we have

0 ≈ r = AJx + Axknown (3.13)

After minimizing r by adjusting x, we have our solution m = x + s.

Now we prepare some roughening operators A. We have already coded a 2-D gradient
operator igrad2 on page 79. Let us combine it with its adjoint to get the 2-D laplacian

74 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

operator. (You might notice that the laplacian operator is “self-adjoint” meaning that the
operator does the same calculation that its adjoint does. Any operator of the form A′A is
self-adjoint because (A′A)′ = A′A′′ = A′A.)

Subroutine lapfill() on page 76 is the same idea as mis1() on page 70 except that the
filter A has been specialized to the laplacian implemented by module laplac2 on page 75.

Subroutine lapfill() can be used for each of our two problems, (1) extending the
seismic data to fill space, and (2) fitting the map exactly to the wells and approximately
to the seismic data. When extending the seismic data, the initially non-zero components
s 6= 0 are fixed and cannot be changed.

The final map is shown in Figure 3.10.

Figure 3.10: Final map based on Laplacian roughening. iin/chevron finalmap

Results can be computed with various filters. I tried both ∇2 and ∇. There are disad-
vantages of each, ∇ being too cautious and ∇2 perhaps being too aggressive. Figure 3.11
shows the difference x between the extended seismic data and the extended wells. Notice
that for ∇ the difference shows a localized “tent pole” disturbance about each well. For ∇2

there could be large overshoot between wells, especially if two nearby wells have significantly
different values. I don’t see that problem here.

My overall opinion is that the Laplacian does the better job in this case. I have that
opinion because in viewing the extended gradient I can clearly see where the wells are. The
wells are where we have acquired data. We’d like our map of the world to not show where
we acquired data. Perhaps our estimated map of the world cannot help but show where we
have and have not acquired data, but we’d like to minimize that aspect.

A good image of the earth hides our data acquisition footprint.

To understand the behavior theoretically, recall that in one dimension the filter ∇ in-

3.2. WELLS NOT MATCHING THE SEISMIC MAP 75

user/fomels/laplac2.c

34 void l a p l a c 2 l o p (bool adj , bool add ,
35 int np , int nr , f loat ∗p , f loat ∗ r)
36 /∗< l i n e a r opera tor >∗/
37 {
38 int i1 , i2 , j ;
39

40 s f a d j n u l l (adj , add , np , nr , p , r) ;
41

42 for (i 2 =0; i 2 < n2 ; i 2++) {
43 for (i 1 =0; i 1 < n1 ; i 1++) {
44 j = i 1+i2 ∗n1 ;
45 i f (i 1 > 0) {
46 i f (adj) {
47 p [j −1] −= r [j] ;
48 p [j] += r [j] ;
49 } else {
50 r [j] += p [j] − p [j −1] ;
51 }
52 }
53 i f (i 1 < n1−1) {
54 i f (adj) {
55 p [j +1] −= r [j] ;
56 p [j] += r [j] ;
57 } else {
58 r [j] += p [j] − p [j +1] ;
59 }
60 }
61 i f (i 2 > 0) {
62 i f (adj) {
63 p [j−n1] −= r [j] ;
64 p [j] += r [j] ;
65 } else {
66 r [j] += p [j] − p [j−n1] ;
67 }
68 }
69 i f (i 2 < n2−1) {
70 i f (adj) {
71 p [j+n1] −= r [j] ;
72 p [j] += r [j] ;
73 } else {
74 r [j] += p [j] − p [j+n1] ;
75 }
76 }
77 }
78 }

76 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

user/fomels/lapfill.c

63 void l a p f i l l (int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
64 f loat ∗ mm /∗ model [m1∗m2] ∗/ ,
65 bool ∗known /∗ mask f o r known data [m1∗m2] ∗/)
66 /∗< i n t e r p o l a t e >∗/
67 {
68 i f (grad) {
69 s f s o l v e r (i g rad2 lop , s f c g s t ep , n12 , 2∗n12 , mm, zero ,
70 n i t e r , ”x0” , mm, ”known” , known , ”end”) ;
71 } else {
72 s f s o l v e r (l ap l a c 2 l op , s f c g s t ep , n12 , n12 , mm, zero ,
73 n i t e r , ”x0” , mm, ”known” , known , ”end”) ;
74 }
75 s f c g s t e p c l o s e () ;
76 }

Figure 3.11: Difference between wells (the final map) and the extended seismic data. Left
is plotted at the wells (with gray background for zero). Center is based on gradient rough-
ening and shows tent-pole-like residuals at wells. Right is based on Laplacian roughening.
iin/chevron diffdiff

3.3. SEARCHING THE SEA OF GALILEE 77

terpolates with straight lines and ∇2 interpolates with cubics. This is because the fitting
goal 0 ≈ ∇m, leads to ∂

∂m′ m′∇′∇m = 0 or ∇′∇m = 0, whereas the fitting goal 0 ≈ ∇2m
leads to ∇4m = 0 which is satisfied by cubics. In two dimensions, minimizing the output
of ∇ gives us solutions of Laplace’s equation with sources at the known data. It is as if ∇
stretches a rubber sheet over poles at each well, whereas ∇2 bends a stiff plate.

Just because ∇2 gives smoother maps than ∇ does not mean those maps are closer to
reality. This is a deeper topic, addressed in Chapter 6. It is the same issue we noticed when
comparing figures 3.3-3.7.

3.3 SEARCHING THE SEA OF GALILEE

Figure 3.12 shows a bottom-sounding survey of the Sea of Galilee1 at various stages of
processing. The ultimate goal is not only a good map of the depth to bottom, but images
useful for the purpose of identifying archaeological, geological, or geophysical details of
the sea bottom. The Sea of Galilee is unique because it is a fresh-water lake below sea-level.
It seems to be connected to the great rift (pull-apart) valley crossing east Africa. We might
delineate the Jordan River delta. We might find springs on the water bottom. We might
find archaeological objects.

The raw data is 132,044 triples, (xi, yi, zi), where xi ranges over about 12 km and where
yi ranges over about 20 km. The lines you see in Figure 3.12 are sequences of data points,
i.e., the track of the survey vessel. The depths zi are recorded to an accuracy of about 10
cm.

The first frame in Figure 3.12 shows simple binning. A coarser mesh would avoid the
empty bins but lose resolution. As we refine the mesh for more detail, the number of empty
bins grows as does the care needed in devising a technique for filling them. This first frame
uses the simple idea from Chapter 1 of spraying all the data values to the nearest bin with
bin2() on page 12 and dividing by the number in the bin. Bins with no data obviously
need to be filled in some other way. I used a missing data program like that in the recent
section on “wells not matching the seismic map.” Instead of roughening with a Laplacian,
however, I used the gradient operator igrad2 on page 79 The solver is grad2fill().

The output of the roughening operator is an image, a filtered version of the depth, a
filtered version of something real. Such filtering can enhance the appearance of interesting
features. For example, scanning the shoreline of the roughened image (after missing data
was filled), we see several ancient shorelines, now submerged.

The adjoint is the easiest image to build. The roughened map is often more informative
than the map itself.

The views expose several defects of the data acquisition and of our data processing.
The impulsive glitches (St. Peter’s fish?) need to be removed but we must be careful not
to throw out the sunken ships along with the bad data points. Even our best image shows
clear evidence of the recording vessel’s tracks. Strangely, some tracks are deeper than others.

1 Data collected by Zvi ben Avraham, TelAviv University. Please communicate with him
zvi@jupiter1.tau.ac.il for more details or if you make something publishable with his data.

78 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Figure 3.12: Views of the bottom of the Sea of Galilee. iin/galilee locfil

3.3. SEARCHING THE SEA OF GALILEE 79

user/fomels/igrad2.c

45 for (i 2 =0; i 2 < n2−1; i 2++) {
46 for (i 1 =0; i 1 < n1−1; i 1++) {
47 i = i 1+i2 ∗n1 ;
48 i f (adj == true) {
49 p [i +1] += r [i] ;
50 p [i+n1] += r [i+n12] ;
51 p [i] −= (r [i] + r [i+n12]) ;
52 } else {
53 r [i] += (p [i +1] − p [i]) ;
54 r [i+n12] += (p [i+n1] − p [i]) ;
55 }
56 }
57 }

user/fomels/grad2fill.c

52 void g r a d 2 f i l l (int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
53 f loat ∗ mm /∗ es t imated model ∗/ ,
54 bool ∗known /∗ mask ∗/)
55 /∗< Run op t im i za t i on >∗/
56 {
57 s f s o l v e r (i g rad2 lop , s f c g s t ep , n12 , 2∗n12 , mm, zero , n i t e r ,
58 ”x0” , mm, ”known” , known , ”end”) ;
59 s f c g s t e p c l o s e () ;
60 }

80 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Perhaps the survey is assembled from work done in different seasons and the water level
varied by season. Perhaps some days the vessel was more heavily loaded and the depth
sounder was on a deeper keel. As for the navigation equipment, we can see that some data
values are reported outside the lake!

We want the sharpest possible view of this classical site. A treasure hunt is never easy
and no one guarantees we will find anything of great value but at least the exercise is a
good warm-up for submarine petroleum exploration.

3.4 INVERSE LINEAR INTERPOLATION

In Chapter 1 we defined linear interpolation as the extraction of values from between
mesh points. In a typical setup (occasionally the role of data and model are swapped), a
model is given on a uniform mesh and we solve the easy problem of extracting values between
the mesh points with subroutine lint1() on page 14. The genuine problem is the inverse
problem, which we attack here. Data values are sprinkled all around, and we wish to find a
function on a uniform mesh from which we can extract that data by linear interpolation.
The adjoint operator for subroutine lint1() simply piles data back into its proper location
in model space without regard to how many data values land in each region. Thus some
model values may have many data points added to them while other model values get none.
We could interpolate by minimizing the energy in the model gradient, or that in the second
derivative of the model, or that in the output of any other roughening filter applied to the
model.

Formalizing now our wish that data d be extractable by linear interpolation F, from
a model m, and our wish that application of a roughening filter with an operator A have
minimum energy, we write the fitting goals:

0 ≈ Fm− d
0 ≈ Am

(3.14)

Suppose we take the roughening filter to be the second difference operator (1,−2, 1) scaled
by a constant ε, and suppose we have a data point near each end of the model and a third
data point exactly in the middle. Then, for a model space 6 points long, the fitting goal
could look like

.8 .2
. . 1 . . .
.5 .5
ε

−2ε ε
ε −2ε ε . . .
. ε −2ε ε . .
. . ε −2ε ε .
. . . ε −2ε ε
. . . . ε −2ε
. ε

m0

m1

m2

m3

m4

m5

 −

d0

d1

d2

0
0
0
0
0
0
0
0

=
[

rd

rm

]
≈ 0 (3.15)

The residual vector has two parts, a data part rd on top and a model part rm on the

3.4. INVERSE LINEAR INTERPOLATION 81

bottom. The data residual should vanish except where contradictory data values happen
to lie in the same place. The model residual is the roughened model.

After all the definitions, we load the negative of the data into the residual. If a starting
model m0 is present, then we update the data part of the residual rd = Fm0 − d and we
load the model part of the residual rm = Am0. Otherwise we begin from a zero model
m0 = 0 and thus the model part of the residual rm is also zero. After this initialization,
subroutine solver reg() begins an iteration loop by first computing the proposed model
perturbation ∆m (called g in the program) with the adjoint operator:

∆m ←−
[

F′ A′] [
rd

rm

]
(3.16)

Using this value of ∆m, we can find the implied change in residual ∆r as

∆
[

rd

rm

]
←−

[
F
A

]
∆m (3.17)

and the last thing in the loop is to use the optimization step function stepper() to choose
the length of the step size and to choose how much of the previous step to include.

An example of using the new solver is subroutine invint1. I chose to implement the
model roughening operator A with the convolution subroutine tcai1() on page 9, which
has transient end effects (and an output length equal to the input length plus the filter
length). The adjoint of subroutine tcai1() suggests perturbations in the convolution input
(not the filter).

user/gee/invint1.c

24 void i nv in t 1 (int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
25 int nd /∗ data s i z e ∗/ ,
26 f loat ∗ coord /∗ data coord ina t e s ∗/ ,
27 const f loat ∗dd /∗ data va l u e s ∗/ ,
28 int n1 , f loat o1 , f loat d1 /∗ model g r i d ∗/ ,
29 int na , const f loat ∗aa /∗ f i l t e r ∗/ ,
30 f loat ∗mm /∗ es t imated model ∗/ ,
31 f loat eps /∗ r e g u l a r i z a t i o n ∗/)
32 /∗< i n v e r s e i n t e r p o l a t i o n >∗/
33 {
34 l i n t 1 i n i t (o1 , d1 , coord) ; /∗ i n t e r p o l a t i o n ∗/
35 t c a i 1 i n i t (na , aa) ; /∗ f i l t e r i n g ∗/
36

37 s f s o l v e r r e g (l i n t 1 l o p , s f c g s t ep , t c a i 1 l op ,
38 n1+na , n1 , nd , mm, dd , n i t e r , eps) ;
39 s f c g s t e p c l o s e () ;
40 }

Figure 3.13 shows an example for a (1,−2, 1) filter with ε = 1. The continuous curve
representing the model m passes through the data points. Because the models are computed

82 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

Figure 3.13: Sample points and
estimation of a continuous function
through them. iin/invint im1-2+1

with transient convolution end-effects, the models tend to damp linearly to zero outside the
region where signal samples are given.

To show an example where the result is clearly a theoretical answer, I prepared another
figure with the simpler filter (1,−1). When we minimize energy in the first derivative of
the waveform, the residual distributes itself uniformly between data points so the solution
there is a straight line. Theoretically it should be a straight line because a straight line
has a vanishing second derivative, and that condition arises by differentiating by x′, the
minimized quadratic form x′A′Ax, and getting A′Ax = 0. (By this logic, the curves
between data points in Figure 3.13 must be cubics.) The (1,−1) result is shown in Figure
3.14.

Figure 3.14: The same data sam-
ples and a function through them
that minimizes the energy in the first
derivative. iin/invint im1-1a

The example of Figure 3.14 has been a useful test case for me. You’ll see it again in
later chapters. What I would like to show you here is a movie showing the convergence to
Figure 3.14. Convergence occurs rapidly where data points are close together. The large
gaps, however, fill at a rate of one point per iteration.

3.4.1 Abandoned theory for matching wells and seismograms

Let us consider theory to construct a map m that fits dense seismic data s and the well data
w. The first goal 0 ≈ Lm − w says that when we linearly interpolate from the map, we
should get the well data. The second goal 0 ≈ A(m−s) (where A is a roughening operator
like ∇ or ∇2) says that the map m should match the seismic data s at high frequencies but
need not do so at low frequencies.

0 ≈ Lm−w
0 ≈ A(m− s)

(3.18)

Although (3.18) is the way I originally formulated the well-fitting problem, I abandoned

3.5. PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION 83

it for several reasons: First, the map had ample pixel resolution compared to other sources
of error, so I switched from linear interpolation to binning. Once I was using binning, I had
available the simpler empty-bin approaches. These have the further advantage that it is
not necessary to experiment with the relative weighting between the two goals in (3.18). A
formulation like (3.18) is more likely to be helpful where we need to handle rapidly changing
functions where binning is inferior to linear interpolation, perhaps in reflection seismology
where high resolution is meaningful.

EXERCISES:

1 It is desired to find a compromise between the Laplacian roughener and the gradient
roughener. What is the size of the residual space?

2 Like the seismic prospecting industry, you have solved a huge problem using binning.
You have computer power left over to do a few iterations with linear interpolation. How
much does the cost per iteration increase? Should you refine your model mesh, or can
you use the same model mesh that you used when binning?

3.5 PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION

First we first look at data d. Then we think about a model m, and an operator L to link the
model and the data. Sometimes the operator is merely the first term in a series expansion
about (m0,d0). Then we fit d − d0 ≈ L(m −m0). To fit the model, we must reduce the
fitting residuals. Realizing that the importance of a data residual is not always simply the
size of the residual but is generally a function of it, we conjure up (topic for later chapters)
a weighting function (which could be a filter) operator W. This defines our data residual:

rd = W[L(m−m0) − (d− d0)] (3.19)

Next we realize that the data might not be adequate to determine the model, perhaps
because our comfortable dense sampling of the model ill fits our economical sparse sampling
of data. Thus we adopt a fitting goal that mathematicians call “regularization” and we
might call a “model style” goal or more simply, a quantification of our prejudice about
models. We express this by choosing an operator A, often simply a roughener like a gradient
(the choice again a topic in this and later chapters). It defines our model residual by Am
or A(m−m0), say we choose

rm = Am (3.20)

In an ideal world, our model prejudice would not conflict with measured data, however,
life is not so simple. Since conflicts between data and preconceived notions invariably arise
(and they are why we go to the expense of acquiring data) we need an adjustable parameter
that measures our “bullheadedness”, how much we intend to stick to our preconceived
notions in spite of contradicting data. This parameter is generally called epsilon ε because
we like to imagine that our bullheadedness is small. (In mathematics, ε is often taken to
be an infinitesimally small quantity.) Although any bullheadedness seems like a bad thing,

84 CHAPTER 3. EMPTY BINS AND INVERSE INTERPOLATION

it must be admitted that measurements are imperfect too. Thus as a practical matter we
often find ourselves minimizing

min := rd · rd + ε2 rm · rm (3.21)

and wondering what to choose for ε. I have two suggestions: My simplest suggestion is to
choose ε so that the residual of data fitting matches that of model styling. Thus

ε =
√

rd · rd

rm · rm
(3.22)

My second suggestion is to think of the force on our final solution. In physics, force is
associated with a gradient. We have a gradient for the data fitting and another for the
model styling:

gd = L′W′rd (3.23)
gm = A′rm (3.24)

We could balance these forces by the choice

ε =
√

gd · gd

gm · gm
(3.25)

Although we often ignore ε in discussing the formulation of a problem, when time comes
to solve the problem, reality intercedes. Generally, rd has different physical units than rm

(likewise gd and gm) and we cannot allow our solution to depend on the accidental choice
of units in which we express the problem. I have had much experience choosing ε, but it
is only recently that I boiled it down to the above two suggestions. Normally I also try
other values, like double or half those of the above choices, and I examine the solutions for
subjective appearance. If you find any insightful examples, please tell me about them.

Computationally, we could choose a new ε with each iteration, but it is more expeditious
to freeze ε, solve the problem, recompute ε, and solve the problem again. I have never seen
a case where more than one iteration was necessary.

People who work with small problems (less than about 103 vector components) have
access to an attractive theoretical approach called cross-validation. Simply speaking, we
could solve the problem many times, each time omitting a different data value. Each solution
would provide a model that could be used to predict the omitted data value. The quality
of these predictions is a function of ε and this provides a guide to finding it. My objections
to cross validation are two-fold: First, I don’t know how to apply it in the large problems
like we solve in this book (I should think more about it); and second, people who worry
much about ε, perhaps first should think more carefully about their choice of the filters W
and A, which is the focus of this book. Notice that both W and A can be defined with a
scaling factor which is like scaling ε. Often more important in practice, with W and A we
have a scaling factor that need not be constant but can be a function of space or spatial
frequency within the data space and/or model space.

Chapter 4

The helical coordinate

For many years it has been true that our most powerful signal-analysis techniques are in one-
dimensional space, while our most important applications are in multi-dimensional space.
The helical coordinate system makes a giant step towards overcoming this difficulty.

Many geophysical map estimation problems appear to be multidimensional, but actually
they are not. To see the tip of the iceberg, consider this example: On a two-dimensional

cartesian mesh, the function

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

has the autocorrelation
1 2 1
2 4 2
1 2 1

.

Likewise, on a one-dimensional cartesian mesh,

the function B = 1 1 0 0 · · · 0 1 1

has the autocorrelation R = 1 2 1 0 · · · 0 2 4 2 0 · · · 1 2 1 .

Observe the numbers in the one-dimensional world are identical with the numbers in the
two-dimensional world. This correspondence is no accident.

4.1 FILTERING ON A HELIX

Figure 1 shows some two-dimensional shapes that are convolved together. The left panel
shows an impulse response function, the center shows some impulses, and the right shows
the superposition of responses.

A surprising, indeed amazing, fact is that Figure 1 was not computed with a two-
dimensional convolution program. It was computed with a one-dimensional computer pro-
gram. It could have been done with anybody’s one-dimensional convolution program, either
in the time domain or in the fourier domain. This magical trick is done with the helical
coordinate system.

85

86 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.1: Two-dimensional convolution as performed in one dimension by module
helicon hlx/helicon diamond

A basic idea of filtering, be it in one dimension, two dimensions, or more, is that you
have some filter coefficients and some sampled data; you pass the filter over the data; at each
location you find an output by crossmultiplying the filter coefficients times the underlying
data and summing the terms.

The helical coordinate system is much simpler than you might imagine. Ordinarily, a
plane of data is thought of as a collection of columns, side by side. Instead, imagine the
columns stored end-to-end, and then coiled around a cylinder. This is the helix. Fortran
programmers will recognize that fortran’s way of storing 2-D arrays in one-dimensional
memory is exactly what we need for this helical mapping. Seismologists sometimes use the
word “supertrace” to describe a collection of seismograms stored “end-to-end”.

Figure 2 shows a helical mesh for 2-D data on a cylinder. Darkened squares depict a
2-D filter shaped like the Laplacian operator ∂xx + ∂yy. The input data, the filter, and the
output data are all on helical meshes all of which could be unrolled into linear strips. A
compact 2-D filter like a Laplacian, on a helix is a sparse 1-D filter with long empty gaps.

Since the values output from filtering can be computed in any order, we can slide the
filter coil over the data coil in any direction. The order that you produce the outputs is
irrelevant. You could compute the results in parallel. We could, however, slide the filter
over the data in the screwing order that a nut passes over a bolt. The screw order is the
same order that would be used if we were to unwind the coils into one-dimensional strips
and convolve them across one another. The same filter coefficients overlay the same data
values if the 2-D coils are unwound into 1-D strips. The helix idea allows us to obtain the
same convolution output in either of two ways, a one-dimensional way, or a two-dimensional
way. I used the one-dimensional way to compute the obviously two-dimensional result in
Figure 1.

4.1.1 Review of 1-D recursive filters

Convolution is the operation we do on polynomial coefficients when we multiply polyno-
mials. Deconvolution is likewise for polynomial division. Often these ideas are described
as polynomials in the variable Z. Take X(Z) to denote the polynomial whose coefficients

4.1. FILTERING ON A HELIX 87

Figure 4.2: Filtering on a helix. The same filter coefficients overlay the same data values
if the 2-D coils are unwound into 1-D strips. (Mathematica drawing by Sergey Fomel)
hlx/Math sergey-helix

are samples of input data, and let A(Z) likewise denote the filter. The convention I adopt
here is that the first coefficient of the filter has the value +1, so the filter’s polynomial is
A(Z) = 1+a1Z +a2Z

2 + · · · . To see how to convolve, we now identify the coefficient of Zk

in the product Y (Z) = A(Z)X(Z). The usual case (k larger than the number Na of filter
coefficients) is

yk = xk +
Na∑
i=1

aixk−i (4.1)

Convolution computes yk from xk whereas deconvolution (also called back substitution)
does the reverse. Rearranging (1) we get

xk = yk −
Na∑
i=1

aixk−i (4.2)

where now we are finding the output xk from its past outputs xk−i and from the present
input yk. We see that the deconvolution process is essentially the same as the convolution
process, except that the filter coefficients are used with opposite polarity; and they are
applied to the past outputs instead of the past inputs. That is why deconvolution must be
done sequentially while convolution can be done in parallel.

4.1.2 Multidimensional deconvolution breakthrough

Deconvolution (polynomial division) can undo convolution (polynomial multiplication). A
magical property of the helix is that we can consider 1-D convolution to be the same as 2-D

88 CHAPTER 4. THE HELICAL COORDINATE

convolution. Hence is a second magical property: We can use 1-D deconvolution to undo
convolution, whether that convolution was 1-D or 2-D. Thus, we have discovered how to
undo 2-D convolution. We have discovered that 2-D deconvolution on a helix is equivalent
to 1-D deconvolution. The helix enables us to do multidimensional deconvolution.

Deconvolution is recursive filtering. Recursive filter outputs cannot be computed in
parallel, but must be computed sequentially as in one dimension, namely, in the order that
the nut screws on the bolt.

Recursive filtering sometimes solves big problems with astonishing speed. It can prop-
agate energy rapidly for long distances. Unfortunately, recursive filtering can also be un-
stable. The most interesting case, near resonance, is also near instability. There is a large
literature and extensive technology about recursive filtering in one dimension. The helix
allows us to apply that technology to two (and more) dimensions. It is a huge technological
breakthrough.

In 3-D we simply append one plane after another (like a 3-D fortran array). It is easier
to code than to explain or visualize a spool or torus wrapped with string, etc.

4.1.3 Examples of simple 2-D recursive filters

Let us associate x- and y-derivatives with a finite-difference stencil or template. (For sim-
plicity take ∆x = ∆y = 1.)

∂

∂x
= 1 −1 (4.3)

∂

∂y
=

1
−1

(4.4)

Convolving a data plane with the stencil (3) forms the x-derivative of the plane. Convolving
a data plane with the stencil (4) forms the y-derivative of the plane. On the other hand,
deconvolving with (3) integrates data along the x-axis for each y. Likewise, deconvolving
with (4) integrates data along the y-axis for each x. Next we look at a fully two-dimensional
operator (like the cross derivative ∂xy).

A nontrivial two-dimensional convolution stencil is

0 −1/4
1 −1/4

−1/4 −1/4
(4.5)

We will convolve and deconvolve a data plane with this operator. Although everything
is shown on a plane, the actual computations are done in one dimension with equations
(1) and (2). Let us manufacture the simple data plane shown on the left in Figure 3.
Beginning with a zero-valued plane, we add in a copy of the filter (5) near the top of the
frame. Nearby add another copy with opposite polarity. Finally add some impulses near
the bottom boundary. The second frame in Figure 3 is the result of deconvolution by the
filter (5) using the one-dimensional equation (2). Notice that deconvolution turns the filter
itself into an impulse, while it turns the impulses into comet-like images. The use of a helix
is evident by the comet images wrapping around the vertical axis.

4.1. FILTERING ON A HELIX 89

Figure 4.3: Illustration of 2-D deconvolution. Left is the input. Right is after deconvolution
with the filter (5) as preformed by by module polydiv hlx/helicon wrap-four

The filtering in Figure 3 ran along a helix from left to right. Figure 4 shows a second
filtering running from right to left. Filtering in the reverse direction is the adjoint. After
deconvolving both ways, we have accomplished a symmetical smoothing. The final frame
undoes the smoothing to bring us exactly back to where we started. The smoothing was
done with two passes of deconvolution and it is undone by two passes of convolution. No
errors, no evidence remains of any of the boundaries where we have wrapped and truncated.

Figure 4.4: Recursive filtering backwards (leftward on the space axis) is done by the adjoint
of 2-D deconvolution. Here we see that 2-D deconvolution compounded with its adjoint is
exactly inverted by 2-D convolution and its adjoint. hlx/helicon back-four

Chapter 5 explains the important practical role to be played by a multidimensional
operator for which we know the exact inverse. Other than multidimensional Fourier trans-
formation, transforms based on polynomial multiplication and division on a helix are the
only known easily invertible linear operators.

In seismology we often have occasion to steer summation along beams. Such an impulse
response is shown in Figure 6.

Of special interest are filters that destroy plane waves. The inverse of such a filter creates
plane waves. Such filters are like wave equations. A filter that creates two plane waves is

90 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.5: A simple low-order 2-D filter whose inverse contains plane waves of two different
dips. One of them is spatially aliased. hlx/helicon wrap-waves

illustrated in figure 5.

Figure 4.6: A simple low-order 2-D filter whose inverse times its inverse adjoint, is approx-
imately a dipping seismic arrival. hlx/helicon dip

4.1.4 Coding multidimensional de/convolution

Let us unroll the filter helix seen in Figure 2 and see what we have. Start from the idea that
a 2-D filter is generally made from a cluster of values near one another in two dimensions
similar to the Laplacian operator in the figure. We see that in the helical approach, a 2-D
filter is a 1-D filter containing some long intervals of zeros. The intervals are about the
length of a 1-D seismogram.

Our program for 2-D convolution with a 1-D convolution program, could convolve with
the somewhat long 1-D strip, but it is much more cost effective to ignore the many zeros,
which is what we do. We do not multiply by the backside zeros, nor do we even store them
in memory. Whereas an ordinary convolution program would do time shifting by a code
line like iy=ix+lag, Module helicon ignores the many zero filter values on backside of the
tube by using the code iy=ix+lag[ia] where a counter ia ranges over the nonzero filter
coefficients. Before operator helicon is invoked, we need to prepare two lists, one list con-
taining nonzero filter coefficients flt[ia], and the other list containing the corresponding
lags lag[ia] measured to include multiple wraps around the helix. For example, the 2-D

4.1. FILTERING ON A HELIX 91

Laplace operator can be thought of as the 1-D filter

1 0 · · · 0 1 −4 1 0 · · · 0 1 helical boundaries−−−−−−−−−−−→
1

1 −4 1
1

(4.6)

The first filter coefficient in equation (6) is +1 as implicit to module helicon. To apply
the Laplacian on a 1000× 1000 mesh requires the filter inputs:

i lag[i] flt[i]

--- ------ -----

0 999 1

1 1000 -4

2 1001 1

3 2000 1

Here we choose to use “declaration of a type”, a modern computer language feature
that is absent from Fortran 77. Fortran 77 has the built in complex arithmetic type. In
module helix we define a type filter, actually, a helix filter. After making this definition,
it will be used by many programs. The helix filter consists of three vectors, a real valued
vector of filter coefficients, an integer valued vector of filter lags, and an optional vector that
has logical values “true” for output locations that will not be computed (either because
of boundary conditions or because of missing inputs). The filter vectors are the size of
the nonzero filter coefficents (excluding the leading 1.) while the logical vector is long and
relates to the data size. The helix module allocates and frees memory for a helix filter.
By default, the logical vector is not allocated but is set to null with the nullify operator
and ignored.

filt/lib/helix.c

29

30 typedef struct s f h e l i x f i l t e r {
31 int nh ;
32 f loat ∗ f l t ;
33 int∗ l ag ;
34 bool ∗ mis ;

For those of you with no C experience, the “->” appearing in the helix module denotes a
pointer. Fortran 77 has no pointers (or everything is a pointer). The behavior of pointers is
somewhat different in each language. Never-the-less, the idea is simple. In module helicon
you see the expression aa->flt[ia]. It refers to the filter named aa. Any filter defined by
the helix module contains three vectors, one of which is named flt. The second component
of the flt vector in the aa filter is referred to as aa->flt[1] which in the example above
refers to the value 4.0 in the center of the laplacian operator. For data sets like above with
1000 points on the 1-axis, this value 4.0 occurs after 1000 lags, thus aa->lag[1]=1000.

Our first convolution operator tcai1 on page 9 was limited to one dimension and a
particular choice of end conditions. With the helix and C pointers, the operator helicon
is a multidimensional filter with considerable flexibility (because of the mis vector) to work

92 CHAPTER 4. THE HELICAL COORDINATE

filt/lib/helicon.c

35 void s f h e l i c o n l o p (bool adj , bool add ,
36 int nx , int ny , f loat ∗ xx , f loat ∗yy)
37 /∗< l i n e a r opera tor >∗/
38 {
39 int ia , iy , i x ;
40

41 s f c o py l o p (adj , add , nx , nx , xx , yy) ;
42

43 for (i a = 0 ; i a < aa−>nh ; i a++) {
44 for (i y = aa−>l ag [i a] ; i y < nx ; i y++) {
45 i f (aa−>mis != NULL && aa−>mis [i y]) continue ;
46 i x = iy − aa−>l ag [i a] ;
47 i f (adj) {
48 xx [i x] += yy [i y] ∗ aa−> f l t [i a] ;
49 } else {
50 yy [i y] += xx [i x] ∗ aa−> f l t [i a] ;
51 }
52 }
53 }
54 }

around boundaries and missing data. The code fragment aa->lag[ia] corresponds to b-1
in tcai1 on page 9.

Operator helicon did the convolution job for Figure 1. As with tcai1 on page 9 the
adjoint of filtering is filtering backwards which means unscrewing the helix.

The companion to convolution is deconvolution. The module polydiv on page 9 is
essentially the same as polydiv1 on the current page, but here it was coded using our
new filter type in module helix on this page which will simplify our many future uses
of convolution and deconvolution. Although convolution allows us to work around missing
input values, deconvolution does not (any input affects all subsequent outputs), so polydiv
never references aa->mis[ia].

EXERCISES:

1 Observe the matrix (1.4) which corresponds to subroutine tcai1 on page 9. What is
the matrix corresponding to helicon?

4.1.5 Causality in two-dimensions

In one dimension, most filters of interest have a short memory. Significant filter coefficients
are concentrated shortly after t = 0. The favorite example in Physics is the damped
harmonic oscillator, all of which is packed into a two-lag filter (second order differential

4.1. FILTERING ON A HELIX 93

user/gee/polydiv.c

36 void po l yd i v l op (bool adj , bool add ,
37 int nx , int ny , f loat ∗ xx , f loat ∗yy)
38 /∗< l i n e a r opera tor >∗/
39 {
40 int ia , iy , i x ;
41

42 s f a d j n u l l (adj , add , nx , ny , xx , yy) ;
43

44 for (i x =0; ix < nx ; i x++) t t [i x] = 0 . ;
45

46 i f (adj) {
47 for (i x = nx−1; i x >= 0 ; ix−−) {
48 t t [i x] = yy [i x] ;
49 for (i a = 0 ; i a < aa−>nh ; i a++) {
50 i y = ix + aa−>l ag [i a] ;
51 i f (i y >= ny) continue ;
52 t t [i x] −= aa−> f l t [i a] ∗ t t [i y] ;
53 }
54 }
55 for (i x =0; ix < nx ; i x++) xx [i x] += t t [i x] ;
56 } else {
57 for (i y = 0 ; iy < ny ; i y++) {
58 t t [i y] = xx [i y] ;
59 for (i a = 0 ; i a < aa−>nh ; i a++) {
60 i x = iy − aa−>l ag [i a] ;
61 i f (i x < 0) continue ;
62 t t [i y] −= aa−> f l t [i a] ∗ t t [i x] ;
63 }
64 }
65 for (i y =0; iy < ny ; i y++) yy [i y] += t t [i y] ;
66 }
67 }

94 CHAPTER 4. THE HELICAL COORDINATE

equation). The complete story is rich in mathematics and in concepts, but to sum up,
filters fall into two categories according to the numerical values of their coefficients. There
are filters for which equations (1) and (2) work as desired and expected. These filters are
called “minimum phase”. There are also filters for which (2) is a disaster numerically, the
feedback process diverging to infinity.

Divergent cases correspond to physical processes that require boundary conditions.
Equation (2) only allows for initial conditions. I oversimplify by trying to collapse an
entire book (FGDP) into a few sentences by saying here that for any fixed spectrum there
exist many filters. Of these, only one has stable polynomial division. That filter has its
energy compacted as soon as possible after the “1.0” at zero lag.

Now let us turn to two dimensions. Filters of interest will correspond to energy concen-
trated near the end of a helix. Let us examine the end of a helix. At the very end, as in
the 1-D case, is a coefficient with the numerical value 1.0. Keeping only coefficients within
two mesh points in any direction from the 1.0, we copy the coefficients from near the end
of the helix to a cartesian mesh like this:

h c 0
p d 0
q e 1
s f a
u g b

=

h c ·
p d ·
q e ·
s f a
u g b

+

· · 0
· · 0
· · 1
· · ·
· · ·

2−D filter = variable + constrained

(4.7)

where a, b, c, ..., u are adjustable coefficients.

Which side of the little rectangular patch of coefficients we choose to place the 1.0 is
rather arbitrary. The important matter is that as a matter of principle, the 1.0 is expected
to lie along one side of the little patch. It is rarely (if ever) found at a corner of the
patch. It is important that beyond the 1.0 (in whatever direction that may be) the filter
coefficients must be zero because in one dimension, these coefficients lie before zero lag.
Our foundations, the basic convolution-deconvolution pair (1) and (2) are applicable only
to filters with all coefficients after zero lag.

Time-series analysis is rich with concepts that the helix now allows us to apply to many
dimensions. First is the notion of an impulse function. Observe that an impulse function
on the 2-D surface of the helical cylinder maps to an impulse function on the 1-D line of the
unwound coil. An autocorrelation function that is an impulse corresponds both to a white
(constant) spectrum in 1-D and to a white (constant) spectrum in 2-D. Next we look at a
particularly important autocorrelation function and see how 2-D is the same as 1-D.

4.2 FINITE DIFFERENCES ON A HELIX

The function

R = −1 0 · · · 0 −1 4 −1 0 · · · 0 −1 (4.8)

4.2. FINITE DIFFERENCES ON A HELIX 95

is an autocorrelation function. It is symmetrical about the “4” and its Fourier transform
is positive for all frequencies. Digging out our old textbooks1 we discover how to compute
a causal wavelet with this autocorrelation. I used the “Kolmogoroff spectral-factorization
method” to find this wavelet H:

H = 1.791 −.651 −.044 −.024 · · · · · · −.044 −.087 −.200 −.558 (4.9)

According to the Kolmogoroff theory, if we form the autocorrelation of H, we will get R.
This is not obvious from the numbers themselves because the computation requires a little
work.

Let the time reversed version of H be denoted H′. This notation is consistant with
an idea from Chapter 1 that the adjoint of a filter matrix is another filter matrix with a
reversed filter. In engineering it is conventional to use the asterisk symbol “∗” to denote
convolution. Thus, the idea that the autocorrelation of a signal H is a convolution of the
signal H with its time reverse (adjoint) can be written as H′ ∗ H = H ∗H′ = R.

Wind the signal R around a vertical-axis helix to see its two-dimensional shape R2:

R helical boundaries−−−−−−−−−−−→
−1

−1 4 −1
−1

= R2 (4.10)

This 2-D filter is the negative of the finite-difference representation of the Laplacian
operator, generally denoted ∇2 = ∂2

∂x2 + ∂2

∂y2 . Now for the magic: Wind the signal H around
the same helix to see its two-dimensional shape H2

H2 =
1.791 −.651 −.044 −.024 · · ·

· · · −.044 −.087 −.200 −.558
(4.11)

In the representation (11) we see the coefficients diminishing rapidly away from maximum
value 1.791. My claim is that the two-dimensional autocorrelation of (11) is (10). You
verified this idea earlier when the numbers were all ones. You can check it again in a few
moments if you drop the small values, say 0.2 and smaller.

Since the autocorrelation of H is H′ ∗H = R = −∇2 is a second derivative, the operator
H must be something like a first derivative. As a geophysicist, I found it natural to compare
the operator ∂

∂y with H by applying them to a local topographic map. The result shown in
Figure 7 is that H enhances drainage patterns whereas ∂

∂y enhances mountain ridges.

The operator H has curious similarities and differences with the familiar gradient and
divergence operators. In two-dimensional physical space, the gradient maps one field to
two fields (north slope and east slope). The factorization of −∇2 with the helix gives us
the operator H that maps one field to one field. Being a one-to-one transformation (unlike
gradient and divergence) the operatorH is potentially invertible by deconvolution (recursive
filtering).

I have chosen the name2 “helix derivative” or “helical derivative” for the operator H. A
telephone pole has a narrow shadow behind it. The helix integral (middle frame of Figure 8)

1 PVI or FGDP, for example, explain spectral factorization. More concisely in PVI, more richly in FGDP.
2 Any fact this basic should be named in some earlier field of mathematics or theoretical physics. Ad-

mittedly, the concept exists on an infinite cartesian plane without a helix, but all my codes in a finite space
involve the helix, and the helix concept led me to it.

96 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.7: Topography, helical derivative, slope south. hlx/helocut helocut

4.2. FINITE DIFFERENCES ON A HELIX 97

and the helix derivative (left frame) show shadows with an angular bandwidth approaching
180◦.

Our construction makes H have the energy spectrum k2
x + k2

y, so the magnitude of the

Fourier transform is
√

k2
x + k2

y. It is a cone centered and with value zero at the origin. By
contrast, the components of the ordinary gradient have amplitude responses |kx| and |ky|
that are lines of zero across the (kx, ky)-plane.

The rotationally invariant cone in the Fourier domain contrasts sharply with the nonro-
tationally invariant function shape in (x, y)-space. The difference must arise from the phase
spectrum. The factorization (11) is nonunique in that causality associated with the helix
mapping can be defined along either x- or y-axes; thus the operator (11) can be rotated or
reflected.

This is where the story all comes together. One-dimensional theory, either the old
Kolmogoroff spectral factorization, or the new Wilson-Burg spectral-factorization method
produces not merely a causal wavelet with the required autocorrelation. It produces one that
is stable in deconvolution. Using H in one-dimensional polynomial division, we can solve
many formerly difficult problems very rapidly. Consider the Laplace equation with sources
(Poisson’s equation). Polynomial division and its reverse (adjoint) gives us P = (Q/H)/H′

which means that we have solved ∇2P = −Q by using polynomial division on a helix. Using
the seven coefficients shown, the cost is fourteen multiplications (because we need to run
both ways) per mesh point. An example is shown in Figure 8.

Figure 4.8: Deconvolution by a filter whose autocorrelation is the two-dimensional Lapla-
cian operator. Amounts to solving the Poisson equation. Left is Q; Middle is Q/H; Right
is (Q/H)/H′. hlx/helicon lapfac

Figure 8 contains both the helix derivative and its inverse. Contrast them to the x- or
y-derivatives (doublets) and their inverses (axis-parallel lines in the (x, y)-plane). Simple
derivatives are highly directional whereas the helix derivative is only slightly directional
achieving its meagre directionality entirely from its phase spectrum.

In practice we often require an isotropic filter. Such a filter is a function of kr =√
k2

x + k2
y. It could be represented as a sum of helix derivatives to integer powers.

98 CHAPTER 4. THE HELICAL COORDINATE

4.2.1 Matrix view of the helix

Physics on a helix can be viewed thru the eyes of matrices and numerical analysis. This
is not easy because the matrices are so huge. Discretize the (x, y)-plane to an N × M
array and pack the array into a vector of N ×M components. Likewise pack the Laplacian
operator ∂xx + ∂yy into a matrix. For a 4× 3 plane, that matrix is shown in equation (12).

− ∇2 =

4 −1 · · −1 · · · · · · ·
−1 4 −1 · · −1 · · · · · ·
· −1 4 −1 · · −1 · · · · ·
· · −1 4 h · · −1 · · · ·

−1 · · h 4 −1 · · −1 · · ·
· −1 · · −1 4 −1 · · −1 · ·
· · −1 · · −1 4 −1 · · −1 ·
· · · −1 · · −1 4 h · · −1
· · · · −1 · · h 4 −1 · ·
· · · · · −1 · · −1 4 −1 ·
· · · · · · −1 · · −1 4 −1
· · · · · · · −1 · · −1 4

(4.12)

The two-dimensional matrix of coefficients for the Laplacian operator is shown in (12),
where, on a cartesian space, h = 0, and in the helix geometry, h = −1. (A similar par-
titioned matrix arises from packing a cylindrical surface into a 4 × 3 array.) Notice that
the partitioning becomes transparent for the helix, h = −1. With the partitioning thus
invisible, the matrix simply represents one-dimensional convolution and we have an alter-
native analytical approach, one-dimensional Fourier Transform. We often need to solve sets
of simultaneous equations with a matrix similar to (12). The method we use is triangular
factorization.

Although the autocorrelation R has mostly zero values, the factored autocorrelation A
has a great number of nonzero terms, but fortunately they seem to be converging rapidly
(in the middle) so truncation (of the middle coefficients) seems reasonable. I wish I could
show you a larger matrix, but all I can do is to pack the signal A into shifted columns of a
lower triangular matrix A like this:

A =

1.8 · · · · · · · · · · ·
−.6 1.8 · · · · · · · · · ·
0.0 −.6 1.8 · · · · · · · · ·
−.2 0.0 −.6 1.8 · · · · · · · ·
−.6 −.2 0.0 −.6 1.8 · · · · · · ·
· −.6 −.2 0.0 −.6 1.8 · · · · · ·
· · −.6 −.2 0.0 −.6 1.8 · · · · ·
· · · −.6 −.2 0.0 −.6 1.8 · · · ·
· · · · −.6 −.2 0.0 −.6 1.8 · · ·
· · · · · −.6 −.2 0.0 −.6 1.8 · ·
· · · · · · −.6 −.2 0.0 −.6 1.8 ·
· · · · · · · −.6 −.2 0.0 −.6 1.8

(4.13)

4.3. CAUSALITY AND SPECTAL FACTORIZATION 99

If you will allow me some truncation approximations, I now claim that the laplacian
represented by the matrix in equation (12) is factored into two parts −∇2 = A′A which
are upper and lower triangular matrices whose product forms the autocorrelation seen in
(12). Recall that triangular matrices allow quick solutions of simultaneous equations by
backsubstitution. That is what we do with our deconvolution program.

4.3 CAUSALITY AND SPECTAL FACTORIZATION

Mathematics sometimes seems a mundane subject, like when it does the “accounting” for
an engineer. Other times it brings unexpected amazing new concepts into our lives. This is
the case with the study of causality and spectral factorization. There are many little-known,
amazing, fundamental ideas here I would like to tell you about. We won’t get to the bottom
of any of them but it’s fun and useful to see what they are and how to use them.

Start with an example. Consider a mechanical object. We can strain it and watch it
stress or we can stress it and watch it strain. We feel knowledge of the present and past
stress history is all we need to determine the present value of strain. Likewise, the converse,
history of strain should tell us the stress. We could say there is a filter that takes us from
stress to strain; likewise another filter takes us from strain to stress. What we have here is
a pair of filters that are mutually inverse under convolution. In the Fourier domain, one is
literally the inverse of the other. What is remarkable is that in the time domain, both are
causal. They both vanish before zero lag τ = 0.

Not all causal filters have a causal inverse. The best known name for one that does
is “minimum-phase filter.” Unfortunately, this name is not suggestive of the fundamental
property of interest, “causal with a causal (convolutional) inverse.” I could call it CwCI.
An example of a causal filter without a causal inverse is the unit delay operator — with
Z-transforms, the operator Z itself. If you delay something, you can’t get it back without
seeing into the future, which you are not allowed to do. Mathematically, 1/Z cannot be
expressed as a polynomial (actually, a convergent infinite series) in positive powers of Z.

Physics books don’t tell us where to expect to find transfer functions that are CwCI.
I think I know why they don’t. Any causal filter has a “sharp edge” at zero time lag
where it switches from nonresponsiveness to responsiveness. The sharp edge might cause
the spectrum to be large at infinite frequency. If so, the inverse filter is small at infinite
frequency. Either way, one of the two filters is unmanageable with Fourier transform theory
which (you might have noticed in the mathematical fine print) requires signals (and spectra)
to have finite energy which means the function must get real small in that immense space
on the t-axis and the ω axis. It is impossible for a function to be small and its inverse
be small. These imponderables get more managable in the world of Time Series Analysis
(discretized time axis).

4.3.1 The spectral factorization concept

Interesting questions arise when we are given a spectrum and find ourselves asking how to
find a filter that has that spectrum. Is the answer unique? We’ll see not. Is there always
an answer that is causal? Almost always, yes. Is there always an answer that is causal with
a causal inverse (CwCI)? Almost always, yes.

100 CHAPTER 4. THE HELICAL COORDINATE

Let us have an example. Consider a filter like the familiar time derivative (1,−1) except
let us downweight the −1 a tiny bit, say (1,−ρ) where 0 << ρ < 1. Now the filter (1,−ρ) has
a spectrum (1−ρZ)(1−ρ/Z) with autocorrelation coefficients (−ρ, 1+ρ2,−ρ) that look a lot
like a second derivative, but it is a tiny bit bigger in the middle. Two different waveforms,
(1,−ρ) and its time reverse both have the same autocorrelation. Spectral factorization
could give us both (1,−ρ) and (ρ,−1) but we always want the one that is CwCI. The bad
one is weaker on its first pulse. Its inverse is not causal. Below are two expressions for
the filter inverse to (ρ,−1), the first divergent (filter coefficients at infinite lag are infinitely
strong), the second convergent but noncausal.

1
ρ− Z

=
1
ρ

(1 + Z/ρ + Z2/ρ2 + · · ·) (4.14)

1
ρ− Z

=
−1
Z

(1 + ρ/Z + ρ2/Z2 + · · ·) (4.15)

(Please multiply each equation by ρ− Z and see it reduce to 1 = 1).

So we start with a power spectrum and we should find a CwCI filter with that energy
spectrum. If you input to the filter an infinite sequence of random numbers (white noise)
you should output something with the original power spectrum.

We easily inverse Fourier transform the square root of the power spectrum getting a
symmetrical time function, but we need a function that vanishes before τ = 0. On the
other hand, if we already had a causal filter with the correct spectrum we could manufacture
many others. To do so all we need is a family of delay operators to convolve with. A pure
delay filter does not change the spectrum of anything. Same for frequency-dependent delay
operators. Here is an example of a frequency-dependent delay operator: First convolve
with (1,2) and then deconvolve with (2,1). Both these have the same amplitude spectrum
so their ratio has a unit amplitude (and nontrivial phase). If you multiply (1+2Z)/(2+Z)
by its Fourier conjugate (replace Z by 1/Z) the resulting spectrum is 1 for all ω.

Anything whose nature is delay is death to CwCI. The CwCI has its energy as close as
possible to τ = 0. More formally, my first book, FGDP, proves that the CwCI filter has
for all time τ more energy between t = 0 and t = τ than any other filter with the same
spectrum.

Spectra can be factorized by an amazingly wide variety of techniques, each of which
gives you a different insight into this strange beast. They can be factorized by factoring
polynomials, by inserting power series into other power series, by solving least squares
problems, by taking logarithms and exponentials in the Fourier domain. I’ve coded most of
them and still find them all somewhat mysterious.

Theorems in Fourier analysis can be interpreted physically in two different ways, one
as given, the other with time and frequency reversed. For example, convolution in one
domain amounts to multiplication in the other. If we were to express the CwCI concept
with reversed domains, instead of saying the “energy comes as quick as possible after τ = 0”
we would say “the frequency function is as close to ω = 0 as possible.” In other words,
it is minimally wiggly with time. Most applications of spectral factorization begin with a
spectrum, a real, positive function of frequency. I once achieved minor fame by starting
with a real, positive function of space, a total magnetic field

√
H2

x + H2
z measured along the

x-axis and I reconstructed the magnetic field components Hx and Hz that were minimally
wiggly in space.

4.3. CAUSALITY AND SPECTAL FACTORIZATION 101

4.3.2 Cholesky decomposition

Conceptually the simplest computational method of spectral factorization might be “Cholesky
decomposition.” For example, the matrix of (13) could have been found by Cholesky fac-
torization of (12). The Cholesky algorithm takes a positive-definite matrix Q and factors
it into a triangular matrix times its transpose, say Q = T′T.

It is easy to reinvent the Cholesky factorization algorithm. To do so, simply write all the
components of a 3×3 triangular matrix T and then explicitly multiply these elements times
the transpose matrix T′. You will find that you have everything you need to recursively
build the elements of T from the elements of Q. Likewise for a 4× 4 matrix, etc.

The 1×1 case shows that the Cholesky algorithm requires square roots. Matrix elements
are not always numbers. Sometimes they are polynomials such as Z-transforms. To avoid
square roots there is a variation of the Cholesky method. In this variation, we factor Q into
Q = T′DT where D is a diagonal matrix.

Once a matrix has been factored into upper and lower triangles, solving simultaneous
equations is simply a matter of two backsubstitutions: (We looked at a special case of
backsubstitution with equation (1.23).) For example, we often encounter simultaneous
equations of the form B′Bm = B′d. Suppose the positive-definite matrix B′B has been
factored into triangle form T′Tm = B′d. To find m we first backsolve T′x = B′d for the
vector x. Then we backsolve Tm = x. When T happens to be a band matrix, then the first
backsubstitution is filtering down a helix and the second is filtering back up it. Polynomial
division is a special case of back substitution.

Poisson’s equation ∇2p = −q requires boundary conditions which we can honor when
we filter starting from both ends. We cannot simply solve Poisson’s equation as an initial-
value problem. We could insert the laplace operator into the polynomial division program,
but the solution would diverge.

Being a matrix method, the Cholesky method of factorization has a cost proportional
to the cube of the size of the matrix. Because our problems are very large and because the
Cholesky method does not produce a useful result if we stop part way to completion, we
look further. The Cholesky method is a powerful method but it does more than we require.
The Cholesky method does not require band matrices, yet these matrices are what we very
often find in applications, so we seek methods that take advantage of the special properties
of band matrices.

4.3.3 Toeplitz methods

Band matrices are often called Toeplitz matrices. In the subject of Time Series Analysis
are found spectral factorization methods that require computations proportional to the
dimension of the matrix squared. They can often be terminated early with a reasonable
partial result. Two Toeplitz methods, the Levinson method and the Burg method are
described in my first textbook, FGDP. Our interest is multidimensional data sets so the
matrices of interest are truely huge and the cost of Toeplitz methods is proportional to the
square of the matrix size. Thus, before we find Toeplitz methods especially useful, we may
need to find ways to take advantage of the sparsity of our filters.

102 CHAPTER 4. THE HELICAL COORDINATE

4.3.4 Kolmogoroff spectral factorization

With Fourier analysis we find a method of spectral factorization that is as fast as Fourier
transformation, namely N log N for a matrix of size N . This is very appealing. An earlier
version of this book included such an algorithm. Pedagogically, I didn’t like it in this book
because it requires lengthy off-topic discussions of Fourier analysis which are already found
in both my first book FGDP and my third book PVI.

The Kolmogoroff calculation is based on the logarithm of the spectrum. The logarithm
of zero is minus infinity — an indicator that perhaps we cannot factorize a spectrum which
becomes zero at any frequency. Actually, the logarithmic infinity is the gentlest kind. The
logarithm of the smallest nonzero value in single precision arithmetic is about −36 which
might not ruin your average calculation. Mathematicians have shown that the integral of
the logarithm of the spectrum must be bounded so that some isolated zero values of the
spectrum are not a disaster. In other words, we can factor the (negative) second derivative
to get the first derivative. This suggests we will never find a causal bandpass filter. It is a
contradiction to desire both causality and a spectral band of zero gain.

The weakness of the Kolmogoroff method is related to its strength. Fourier methods
strictly require the matrix to be a band matrix. A problem many people would like to solve
is how to handle a matrix that is “almost” a band matrix — a matrix where any band
changes slowly with location.

4.4 WILSON-BURG SPECTRAL FACTORIZATION

(If you are new to this material, you should pass over this section.) Spectral factorization
is the job of taking a power spectrum and from it finding a causal (zero before zero time)
filter with that spectrum. Methods for this task (there are many) not only produce a causal
wavelet, but they typically produce one whose convolutional inverse is also causal. (This
is called the “minimum phase” property.) In other words, with such a filter we can do
stable deconvolution. Here I introduce a new method of spectral factorization that looks
particularly suitable for the task at hand. I learned this new method from John Parker
Burg who attributes it to an old paper by Wilson (I find Burg’s explanation, below, much
clearer than Wilson’s.)

To invoke the factorization subroutine, you need to supply one side of an autocorrelation
function. For example, let us specify the negative of the 2-D Laplacian (an autocorrelation)
in a vector n = 256× 256 points long.

rr[0] = 4.

rr[1] = -1.

rr[256] = -1.

4.4.1 Wilson-Burg theory

Newton’s iteration for square roots

at+1 =
1
2

(
at +

s

at

)
(4.16)

4.4. WILSON-BURG SPECTRAL FACTORIZATION 103

converges quadratically starting from any real initial guess a0 except zero. When a0 is
negative, Newton’s iteration converges to the negative square root.

Quadratic convergence means that the square of the error at −
√

s at one iteration is
proportional to the error at the next iteration

at+1 −
√

s ∼ (at −
√

s)2 = a2
t − 2at

√
s + s > 0 (4.17)

so, for example if the error is one significant digit at one iteration, at the next iteration it
is two digits, then four, etc. We cannot use equation (17) in place of the Newton iteration
itself, because it uses the answer

√
s to get the answer at+1, and also we need the factor of

proportionality. Notice, however, if we take the factor to be 1/(2at), then
√

s cancels and
equation (17) becomes itself the Newton iteration (16).

Another interesting feature of the Newton iteration is that all iterations (except possibly
the initial guess) are above the ultimate square root. This is obvious from equation (17).

We can insert spectral functions in the Newton square-root iteration, for example s(ω)
and a(ω). Where the first guess a0 happens to match

√
s, it will match

√
s at all iterations.

The Newton iteration is

2
at+1

at
= 1 +

s

a2
t

(4.18)

Something inspires Wilson to express the spectrum S = ĀA as a Z-transform and then
write the iteration

Āt+1(1/Z)
Āt(1/Z)

+
At+1(Z)
At(Z)

= 1 +
S(Z)

Āt(1/Z) At(Z)
(4.19)

Now we are ready for the algorithm: Compute the right side of (19) by polynomial
division forwards and backwards and then add 1. Then abandon negative lags and take half
of the zero lag. Now you have At+1(Z)/At(Z). Multiply out (convolve) the denominator
At(Z), and you have the desired result At+1(Z). Iterate as long as you wish.

(Parenthetically, for those people familiar with the idea of minimum phase (if not, see
FGDP or PVI), we show that At+1(Z) is minimum phase: Both sides of (19) are positive,
as noted earlier. Both terms on the right are positive. Since the Newton iteration always
overestimates, the 1 dominates the rightmost term. After masking off the negative powers
of Z (and half the zero power), the right side of (19) adds two wavelets. The 1/2 is wholly
real, and hence its real part always dominates the real part of the rightmost term. Thus
(after masking negative powers) the wavelet on the right side of (19) has a positive real
part, so the phase cannot loop about the origin. This wavelet multiplies At(Z) to give the
final wavelet At+1(Z) and the product of two minimum-phase wavelets is minimum phase.)

The input of the program is the spectrum S(Z) and the output is the factor A(Z), a
function with the spectrum S(Z). I mention here that in later chapters of this book, the
factor A(Z) is known as the inverse Prediction-Error Filter (PEF). In the Wilson-Burg code
below, S(Z) and A(Z) are Z-transform polynomials but their lead coefficients are extracted
off, so for example, A(z) = (a0) + (a1Z + a2Z

2 + · · ·) is broken into the two parts a0 and
aa.

104 CHAPTER 4. THE HELICAL COORDINATE

user/gee/wilson.c

44 f loat w i l s o n f a c t o r (int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
45 f loat s0 /∗ zero−l a g auto−c o r r e l a t i o n ∗/ ,
46 s f f i l t e r s s /∗ input auto−c o r r e l a t i o n ∗/ ,
47 s f f i l t e r aa /∗ output f a c t o r ∗/ ,
48 bool verb /∗ v e r b o s i t y f l a g ∗/ ,
49 f loat t o l /∗ t o l e r anc e ∗/)
50 /∗< Factor >∗/
51 {
52 f loat eps ;
53 int i , i t e r ;
54

55 for (i =0; i < n2 ; i++) au [i] = 0 . ;
56 au [n−1] = s0 ;
57 b [0] = 1 . ; /∗ i n i t i a l i z e ∗/
58

59 for (i =0; i < ss−>nh ; i++) { /∗ symmetrize input auto ∗/
60 au [n−1+ss−>l ag [i]] = ss−> f l t [i] ;
61 au [n−1−ss−>l ag [i]] = ss−> f l t [i] ;
62 }
63

64 s f h e l i c o n i n i t (aa) ; /∗ mu l t i p l y polynoms ∗/
65 p o l y d i v i n i t (n2 , aa) ; /∗ d i v i d e polynoms ∗/
66 for (i t e r =0; i t e r < n i t e r ; i t e r++) {
67 po l yd i v l op (f a l s e , f a l s e , n2 , n2 , au , bb) ; /∗ S/A ∗/
68 po l yd i v l op (true , f a l s e , n2 , n2 , cc , bb) ; /∗ S/(AA’) ∗/
69 eps = 0 . ;
70 for (i =1; i < n ; i++) { /∗ b = p l u s s i d e (1+cc) ∗/
71 b [i] = 0 . 5∗ (cc [n−1+i] + cc [n−1− i]) / cc [n−1] ;
72 i f (f abs (b [i]) > eps) eps = fabs (b [i]) ;
73 }
74 i f (verb) s f warn ing (” wi l son %d %f ” , i t e r , eps) ;
75 i f (eps < t o l) break ;
76

77 s f h e l i c o n l o p (f a l s e , f a l s e , n , n , b , c) ;
/∗ c = A b ∗/

78

79 /∗ put on h e l i x ∗/
80 for (i =0; i < aa−>nh ; i++) aa−> f l t [i] = c [aa−>l ag [i]] ;
81 }
82 return s q r t f (cc [n−1]) ;
83 }

4.5. HELIX LOW-CUT FILTER 105

EXERCISES:

1 Fomel’s factorization: A simple trick to avoid division in square root computation is
to run Newton’s method on the inverse square root instead. The iteration is then
R′ = 1

2R(3 − R2X2) where R converges (quadratically) to 1/
√

X2. To get the square
root, just multiply R by X2. This leads to a reciprocal version of the Wilson-Burg
algorithm. A′/A + Ā′/Ā = 3 − AĀS Here is how it can work: Construct an inverse
autocorrelation — for example, an ideal isotropic smoother; make a guess for A (min-
phase roughener); iterate: (1) compute 3−AA∗S, (2) take its causal part, (3) convolve
with A to get A′. Each iteration involves just three convolutions (could be even done
without helix).

4.5 HELIX LOW-CUT FILTER

If you want to see some tracks on the side of a hill, you want to subtract the hill and see
only the tracks. Usually, however, you don’t have a very good model for the hill. As an
expedient you could apply a low-cut filter to remove all slowly variable functions of altitude.
In chapter 1 we found the Sea of Galilee in Figure 1.3 to be too smooth for viewing pleasure
so we made the roughened versions in Figure 1.6 using a filter based on equation (2.13), a
one-dimensional filter that we could apply over the x-axis or the y-axis. In Fourier space
such a filter has a response function of kx or a function of ky. The isotropy of physical
space tells us it would be more logical to design a filter that is a function of k2

x + k2
y. In

Figure 7 we saw that the helix derivative H does a nice job. The Fourier magnitude of
its impulse response is kr =

√
k2

x + k2
y. There is a little anisotropy connected with phase

(which way should we wind the helix, on x or y?) but it is not nearly so severe as that
of either component of the gradient, the two components having wholly different spectra,
amplitude |kx| or |ky|.

It is nice having the 2-D helix derivative, but we can imagine even nicer 2-D low-cut
filters. In one dimension, equation (2.13) and (2.13) we designed a filters with an adjustable
parameter, a cutoff frequency. We don’t have such an object in 2-D so I set out to define
one. It came out somewhat abstract and complicated, and didn’t work very well, but along
the way I found a simpler parameter that is very effective in practice. We’ll look at it first.

First I had a problem preparing Figure 9. It shows shows the application of the helix
derivative to a medical X-ray. The problem was that the original X-ray was all positive val-
ues of brightness so there was a massive amount of spatial low frequency present. Obviously
an x-derivative or a y-derivative would eliminate the low frequency, but the helix derivative
did not. This unpleasant surprise arises because the filter in equation (11) was truncated
after a finite number of terms. Adding up the terms actually displayed in equation (11),
they sum to .183 whereas theoretically the sum of all the terms should be zero. From the
ratio of .183/1.791 we can say that the filter pushes zero frequency amplitude 90% of the
way to zero value. When the image contains very much zero frequency amplitude, this is
not good enough. Better results could be obtained with more coefficients, and I did use
more coefficients, but simply removing the mean saved me from needing a costly number of
filter coefficients.

We can visualize a plot of the magnitude of the 2-D Fourier transform of the filter (11).

106 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.9: Mammogram (medical
X-ray). The cancer is the “spoked
wheel.” (I apologize for the inability
of paper publishing technology to ex-
hibit a clear grey image.) The white
circles are metal foil used for naviga-
tion. The little halo around a circle
exhibits the impulse response of the
helix derivative. hlx/mam mam

It is a 2-D function of kx and ky and it should resemble kr =
√

k2
x + k2

y. It does look like

this even when the filter (11) has been truncated. The point of the cone kr =
√

k2
x + k2

y

becomes rounded and the truncated approximation of kr does not reach zero at the origin
of the (kx, ky)-plane. We can force it to vanish at zero frequency by subtracting .183 from
the lead coefficient 1.791. I did not do that subtraction in Figure 10 which explains the
whiteness in the middle of the lake.

Now let us return to my more logical but less effective approach. I prepared a half dozen
medical X-rays like Figure 9. The doctor brought her young son to my office one evening
to evaluate the results. In a dark room I would show the original X-ray on a big screen
and then suddenly switch to the helix derivative. Every time I did this, her son would
exclaim “Wow!” The doctor was not so easily impressed, however. She was not accustomed
to the unfamiliar image. Fundamentally, the helix derivative applied to her data does
compress the dynamic range making weaker features more readily discernable. We were
sure of this from theory and from various geophysical examples. The subjective problem
was her unfamiliarity with our display. I found that I could always spot anomalies more
quickly on the filtered display, but then I would feel more comfortable when I would discover
those same anomalies also present (though less evident) in the original data. Thinking this
through, I decided the doctor would likely have been more impressed had I used a spatial
lowcut filter instead of the helix derivative. That would have left the details of her image
(above the cutoff frequency) unchanged altering only the low frequencies, thereby allowing
me to increase the gain.

In 1-D we easily make a low-cut filter by compounding a first derivative (which destroys
low frequencies) with a leaky integration (which undoes the derivative at all other frequen-
cies). We can do likewise with a second derivative. In Z-transform notation, we would use
something like (−Z−1 + 2.00 − Z)/(−Z−1 + 2.01 − Z). (The numerical choice of the .01

4.5. HELIX LOW-CUT FILTER 107

Figure 4.10: Galilee roughened by gradient and by helical derivative. hlx/helgal helgal

controls the cutoff frequency.) We could use spectral factorization to break this spectrum
into causal and anticausal factors. The analogous filter in 2-D is −∇2/(−∇2 + k2

0) which
could also be factored as we did the helix derivative. I tried it. I ran into the problem that
my helix derivative operator had a practical built-in parameter, the number of coefficients,
which also behaves like a cutoff frequency. If I were to continue this project, I would use
expressions for −∇2/(−∇2 + k2

0) directly in the Fourier domain where there is only one
adjustable parameter, the cutoff frequency k0, and there is no filter length to confuse the
issue and puff-up the costs.

A final word about the doctor. As she was about to leave my office she suddenly asked
whether I had scratched one of her X-rays. We were looking at the helix derivative and it did
seem to show a big scratch. What should have been a line was broken into a string of dots.
I apologized in advance and handed her the original film negatives which she proceeded to
inspect. “Oh,” she said, “Bad news. There are calcification nodules along the ducts.” So
the scratch was not a scratch, but an important detail that had not been noticed on the
original X-ray.

In preparing an illustration for here, I learned one more lesson. The scratch was small,
so I enlarged a small portion of the mammogram for display. The very process of selecting a
small portion followed by scaling the amplitude between maximum and minimum darkness
of printer ink had the effect enhancing the visibility of the scratch on the mammogram
itself. Now Figure 11 shows it to be perhaps even clearer than on the helix derivative.

108 CHAPTER 4. THE HELICAL COORDINATE

Figure 4.11: Not a scratch. hlx/mam scratch

4.6 THE MULTIDIMENSIONAL HELIX

Till now the helix idea was discussed as if it were merely a two-dimensional concept. Here
we explore its multidimensional nature. Our main goal is to do multidimensional convolu-
tion with a one-dimensional convolution program. This allows us to do multidimensional
deconvolution with a one-dimensional deconvolutional program which is “magic”, i.e. many
novel applications will follow.

We do multidimensional deconvolution with causal (one-sided) one-dimensional filters.
Equation (7) shows such a one-sided filter as it appears at the end of a 2-D helix. Figure 12
shows it in three dimensions. The top plane in Figure 12 is the 2-D filter seen in equation
(7). The top plane can be visualized as the area around the end of a helix. Above the top
plane are zero-valued anticausal filter coefficients.

Figure 4.12: A 3-D causal filter
at the starting end of a 3-D helix.
hlx/XFig 3dpef

4.7. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 109

It is natural to ask, “why not put the ‘1’ on a corner of the cube?” We could do that,
but that is not the most general possible form. A special case of Figure 12, stuffing much
of the volume with lots of zeros would amount to a ‘1’ on a corner. On the other hand, if
we assert the basic form has a ‘1’ on a corner we cannot get Figure 12 as a special case. In
a later chapter we’ll see that we often need as many coefficients as we can have near the ‘1’.
In Figure 12 we lose only those neighboring coefficients that 1-D causality requires.

Geometrically, the three-dimensional generalization of a helix is like string on a spool,
but that analogy does not illuminate our underlying conspiracy, which is to represent mul-
tidimensional convolution and deconvolution as one-dimensional.

4.7 SUBSCRIPTING A MULTIDIMENSIONAL HELIX

Basic utilities transform back and forth between multidimensional matrix coordinates and
helix coordinates. The essential module used repeatedly in applications later in this book
is createhelix on page 28. We begin here from its intricate underpinnings.

Fortran77 has a concept of a multidimensional array being equivalent to a one-dimensional
array. Given that the hypercube specification nd=(n1,n2,n3,...) defines the storage
dimension of a data array, we can refer to a data element as either dd(i1,i2,i3,...)
or dd(i1 +n1*(i2-1) +n1*n2*(i3-1) +...). The helix says to refer to the multidimen-
sional data by its equivalent one-dimensional index (sometimes called its vector subscript
or linear subscript).

The filter, however, is a much more complicated story than the data: First, we require
all filters to be causal. In other words, the Laplacian doesn’t fit very well, since it is intrin-
sically noncausal. If you really want noncausal filters, you will need to provide your own
time shifts outside the tools supplied here. Second, a filter is usually a small hypercube, say
aa(a1,a2,a3,...) and would often be stored as such. For the helix we must store it in a
special one-dimensional form. Either way, the numbers na= (a1,a2,a3,...) specify the
dimension of the hypercube. In cube form, the entire cube could be indexed multidimen-
sionally as aa(i1,i2,...) or it could be indexed one-dimensionally as aa(ia,1,1,...)
or sometimes aa[ia] by letting ia cover a large range. When a filter cube is stored in its
normal “tightly packed” form the formula for computing its one-dimensional index ia is

ia = i1 +a1*i2 +a1*a2*i3 + ...

When the filter cube is stored in an array with the same dimensions as the data, data...[n3][n2][n1],
the formula for ia is

ia = i1 +n1*i2 +n1*n2*i3 + ...

Module decart below contains two subroutines that explicitly provide us the transfor-
mations between the linear index i and the multidimensional indices ii= (i1,i2,...).
The two subroutines have the logical names cart2line and line2cart.

The fortran linear index is closely related to the helix. There is one major difference,
however, and that is the origin of the coordinates. To convert from the linear index to

110 CHAPTER 4. THE HELICAL COORDINATE

filt/lib/decart.c

22 void s f l i n e 2 c a r t (int dim /∗ number o f dimensions ∗/ ,
23 const int∗ nn /∗ box s i z e [dim] ∗/ ,
24 int i /∗ l i n e coord ina te ∗/ ,
25 int∗ i i /∗ ca r t e s i an coord ina t e s [dim] ∗/)
26 /∗< Convert l i n e to Cartes ian >∗/
27 {
28 int ax i s ;
29

30 for (ax i s = 0 ; ax i s < dim ; ax i s++) {
31 i i [a x i s] = i%nn [ax i s] ;
32 i /= nn [ax i s] ;
33 }
34 }
35

36 int s f c a r t 2 l i n e (int dim /∗ number o f dimensions ∗/ ,
37 const int∗ nn /∗ box s i z e [dim] ∗/ ,
38 const int∗ i i /∗ ca r t e s i an coord ina t e s [dim] ∗/)
39 /∗< Convert Cartes ian to l i n e >∗/
40 {
41 int i , a x i s ;
42

43 i f (dim < 1) return 0 ;
44

45 i = i i [dim−1] ;
46 for (ax i s = dim−2; ax i s >= 0 ; axis−−) {
47 i = i ∗nn [ax i s] + i i [ax i s] ;
48 }
49 return i ;
50 }

4.7. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 111

the helix lag coordinate, we need to subtract the fortran linear index of the “1.0” which is
usually taken at center= (1+a1/2, 1+a2/2, ..., 1). (On the last dimension, there is no
shift because nobody stores the volume of zero values that would occur before the 1.0.) The
decart module fails for negative subscripts. Thus we need to be careful to avoid thinking of
the filter’s 1.0 (shown in Figure 12) as the origin of the multidimensional coordinate system
although the 1.0 is the origin in the one-dimensional coordinate system.

Even in one dimension (see the matrix in equation (1.4)), to define a filter operator we
need to know not only filter coefficients and a filter length, but we also need to know the
data length. To define a multidimensional filter using the helix idea, besides the properties
intrinsic to the filter, we also need to know the circumference of the helix, i.e., the length
on the 1-axis of the data’s hypercube as well as the other dimensions nd=(n1,n2,...) of
the data’s hypecube.

Thinking about convolution on the helix, it is natural to think about the filter and data
being stored in the same way, that is, by reference to the data size. This would waste so
much space, however, that our helix filter module helix on page 7 instead stores the filter
coefficients in one vector and their lags in another. The i-th coefficient value of the filter
goes in aa->flt[i] and the i-th lag ia[i] goes in aa->lag[i]. The lags are the same as
the fortran linear index except for the overall shift of the 1.0 of a cube of data dimension
nd. Our module for convolution on a helix, helicon. has already an implicit “1.0” at the
filter’s zero lag so we do not store it. (It is an error to do so.)

Module createhelix on page 28 allocates memory for a helix filter and builds filter lags
along the helix from the hypercube description. The hypercube description is not the literal
cube seen in Figure 12 but some integers specifying that cube: the data cube dimensions
nd, likewise the filter cube dimensions na, the parameter center identifying the location of
the filter’s “1.0”, and a gap parameter used in a later chapter. To find the lag table, module
createhelix first finds the fortran linear index of the center point on the filter hypercube.
Everything before that has negative lag on the helix and can be ignored. (Likewise, in a
later chapter we see a gap parameter that effectively sets even more filter coefficients to
zero so their lags can be ignored too.) Then it sweeps from the center point over the rest
of the filter hypercube calculating for a data-sized cube nd, the fortran linear index of each
filter element. Near the end of the code you see the calculation of a parameter lag0d. This
is the count of the number of zeros that a data-sized fortran array would store in a filter
cube before the filter’s 1.0. We need to subtract this shift from the filter’s fortran linear
index to get the lag on the helix.

A filter can be represented literally as a multidimensional cube like equation (7) shows
us in two dimensions or like Figure 12 shows us in three dimensions. Unlike the helical form,
in literal cube form, the zeros preceding the “1.0” are explicitly present so lag0 needs to be
added back in to get the fortran subscript. To convert a helix filter aa to fortran’s multidi-
mensional hypercube cube(n1,n2,...) is module boxfilter: The boxfilter module is
normally used to display or manipulate a filter that was estimated in helical form (usually
estimated by the least-squares method).

A reasonable arrangement for a small 3-D filter is na={5,3,2} and center={3,2,1}.
Using these arguments, I used createhelix on page 28 to create a filter. I set all the helix
filter coefficients to 2. Then I used module boxfilter on page 29 to put it in a convenient
form for display. Finally, I printed it:

112 CHAPTER 4. THE HELICAL COORDINATE

user/gee/createhelix.c

36 s f f i l t e r c r e a t e h e l i x (int ndim /∗ number o f dimensions ∗/ ,
37 int∗ nd /∗ data s i z e [ndim] ∗/ ,
38 int∗ cente r /∗ f i l t e r cen te r [ndim] ∗/ ,
39 int∗ gap /∗ f i l t e r gap [ndim] ∗/ ,
40 int∗ na /∗ f i l t e r s i z e [ndim] ∗/)
41 /∗< a l l o c a t e and output a h e l i x f i l t e r >∗/
42 {
43 s f f i l t e r aa ;
44 int i i [SF MAX DIM] , na123 , ia , nh , lag0a , lag0d , ∗ lag , i ;
45 bool sk ip ;
46

47 for (na123 = 1 , i =0; i < ndim ; i++) na123 ∗= na [i] ;
48 l ag = (int ∗) a l l o c a (na123∗ s izeof (int)) ;
49

50 /∗ index po in t i n g to the ”1.0” ∗/
51 l ag0a = s f c a r t 2 l i n e (ndim , na , c ent e r) ;
52

53 nh=0;
54 /∗ l oop over l i n e a r index . ∗/
55 for (i a = 1+lag0a ; i a < na123 ; i a++) {
56 s f l i n e 2 c a r t (ndim , na , ia , i i) ;
57

58 sk ip = f a l s e ;
59 for (i =0; i < ndim ; i++) {
60 i f (i i [i] < gap [i]) {
61 sk ip = true ;
62 break ;
63 }
64 }
65 i f (sk ip) continue ;
66

67 l ag [nh] = s f c a r t 2 l i n e (ndim , nd , i i) ;
68 nh++; /∗ go t another l i v e one ∗/
69 }
70 /∗ cen ter s h i f t f o r nd cube ∗/
71 lag0d = s f c a r t 2 l i n e (ndim , nd , c ent e r) ;
72 aa = s f a l l o c a t e h e l i x (nh) ; /∗ nh becomes s i z e o f f i l t e r ∗/
73

74 for (i a =0; i a < nh ; i a++) {
75 aa−>l ag [i a] = lag [i a] − lag0d ;
76 aa−> f l t [i a] = 0 . ;
77 }
78

79 return aa ;
80 }

4.7. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 113

user/gee/boxfilter.c

24 void box (int dim /∗ number o f dimaneions ∗/ ,
25 const int ∗nd /∗ data s i z e [dim] ∗/ ,
26 const int ∗ cente r /∗ f i l t e r cen te r [dim] ∗/ ,
27 const int ∗na /∗ f i l t e r s i z e [dim] ∗/ ,
28 const s f f i l t e r aa /∗ input f i l t e r ∗/ ,
29 int nc /∗ box s i z e ∗/ ,
30 f loat ∗ cube /∗ output box [nc] ∗/)
31 /∗< box i t >∗/
32 {
33 int i i [SF MAX DIM] ;
34 int j , lag0a , lag0d , id , i a ;
35

36 for (i a =0; i a < nc ; i a++) {
37 cube [i a] = 0 . ;
38 }
39 l ag0a = s f c a r t 2 l i n e (dim , na , c ent e r) ; /∗ 1.0 in na . ∗/
40 cube [lag0a] = 1 . ; /∗ p lace i t . ∗/
41 lag0d = s f c a r t 2 l i n e (dim , nd , c ent e r) ; /∗ 1.0 in nd . ∗/
42 for (j =0; j < aa−>nh ; j++) { /∗ i n s p e c t the en t i r e h e l i x ∗/
43 id = aa−>l ag [j] + lag0d ;
44 s f l i n e 2 c a r t (dim , nd , id , i i) ; /∗ i i = ca r t e s i an ∗/
45 i a = s f c a r t 2 l i n e (dim , na , i i) ; /∗ i a = l i n e a r in aa ∗/
46 cube [i a] = aa−> f l t [j] ; /∗ copy the f i l t e r ∗/
47 }
48 }

114 CHAPTER 4. THE HELICAL COORDINATE

0.000 0.000 0.000 0.000 0.000

0.000 0.000 1.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

Different data sets have different sizes. To convert a helix filter from one data size to
another, we could drop the filter into a cube with module cube. Then we could extract it
with module unbox specifying any data set size we wish. Instead we use module regrid
prepared by Sergey Fomel which does the job without reference to an underlying filter cube.
He explains his regrid module thus:

Imagine a filter being cut out of a piece of paper and glued on another paper,
which is then rolled to form a helix.

We start by picking a random point (let’s call it rand) in the cartesian grid
and placing the filter so that its center (the leading 1.0) is on top of that point.
rand should be larger than (or equal to) center and smaller than min (nold,
nnew), otherwise the filter might stick outside the grid (our piece of paper.)
rand=nold/2 will do (assuming the filter is small), although nothing should
change if you replace nold/2 with a random integer array between center and
nold - na.

The linear coordinate of rand is h0 on the old helix and h1 on the new helix.
Recall that the helix lags aa->lag are relative to the center. Therefore, we need
to add h0 to get the absolute helix coordinate (h). Likewise, we need to subtract
h1 to return to a relative coordinate system.

4.7. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 115

user/gee/regrid.c

24 void r e g r i d (int dim /∗ number o f dimensions ∗/ ,
25 const int∗ nold /∗ o ld data s i z e [dim] ∗/ ,
26 const int∗ nnew /∗ new data s i z e [dim] ∗/ ,
27 s f f i l t e r aa /∗ modi f ied f i l t e r ∗/)
28 /∗< change data s i z e >∗/
29 {
30 int i , h0 , h1 , h , i i [SF MAX DIM] ;
31

32 for (i =0; i < dim ; i++) {
33 i i [i] = nold [i]/2−1;
34 }
35

36 h0 = s f c a r t 2 l i n e (dim , nold , i i) ; /∗ midpoint l a g on nold ∗/
37 h1 = s f c a r t 2 l i n e (dim , nnew , i i) ; /∗ on nnew ∗/
38 for (i =0; i < aa−>nh ; i++) { /∗ f o r a l l f i l t e r c o e f f i c i e n t s ∗/
39 h = aa−>l ag [i] + h0 ;
40 s f l i n e 2 c a r t (dim , nold , h , i i) ;
41 aa−>l ag [i] = s f c a r t 2 l i n e (dim , nnew , i i) − h1 ;
42 }
43 }

116 CHAPTER 4. THE HELICAL COORDINATE

Chapter 5

Preconditioning

When I first realized that practical imaging methods in widespread industrial use amounted
merely to the adjoint of forward modeling, I (and others) thought an easy way to achieve
fame and fortune would be to introduce the first steps towards inversion along the lines of
Chapter 2. Although inversion generally requires a prohibitive number of steps, I felt that
moving in the gradient direction, the direction of steepest descent, would move us rapidly in
the direction of practical improvements. This turned out to be optimistic. It was too slow.
But then I learned about the conjugate gradient method that spectacularly overcomes a
well-known speed problem with the method of steepest descents. I came to realize that it
was still too slow. I learned this by watching the convergence in Figure 5.6. This led me to
the helix method in Chapter . Here we’ll see how it speeds many applications.

We’ll also come to understand why the gradient is such a poor direction both for steepest
descent and for conjugate gradients. An indication of our path is found in the contrast
between and exact solution m = (A′A)−1A′d and the gradient ∆m = A′d (which is the
first step starting from m = 0). Notice that ∆m differs from m by the factor (A′A)−1.
This factor is sometimes called a spectrum and in some situations it literally is a frequency
spectrum. In these cases, ∆m simply gets a different spectrum from m and many iterations
are required to fix it. Here we’ll find that for many problems, “preconditioning” with the
helix is a better way.

5.1 PRECONDITIONED DATA FITTING

Iterative methods (like conjugate-directions) can sometimes be accelerated by a change of
variables. The simplest change of variable is called a “trial solution”. Formally, we write
the solution as

m = Sp (5.1)

where m is the map we seek, columns of the matrix S are “shapes” that we like, and
coefficients in p are unknown coefficients to select amounts of the favored shapes. The
variables p are often called the “preconditioned variables”. It is not necessary that S be
an invertible matrix, but we’ll see later that invertibility is helpful. Take this trial solution
and insert it into a typical fitting goal

0 ≈ Fm − d (5.2)

117

118 CHAPTER 5. PRECONDITIONING

and get
0 ≈ FSp − d (5.3)

We pass the operator FS to our iterative solver. After finding the best fitting p, we merely
evaluate m = Sp to get the solution to the original problem.

We hope this change of variables has saved effort. For each iteration, there is a little
more work: Instead of the iterative application of F and F′ we have iterative application of
FS and S′F′.

Our hope is that the number of iterations decreases because we are clever, or because
we have been lucky in our choice of S. Hopefully, the extra work of the preconditioner
operator S is not large compared to F. If we should be so lucky that S = F−1, then we
get the solution immediately. Obviously we would try any guess with S ≈ F−1. Where I
have known such S matrices, I have often found that convergence is accelerated, but not by
much. Sometimes it is worth using FS for a while in the beginning, but later it is cheaper
and faster to use only F. A practitioner might regard the guess of S as prior information,
like the guess of the initial model m0.

For a square matrix S, the use of a preconditioner should not change the ultimate solu-
tion. Taking S to be a tall rectangular matrix, reduces the number of adjustable parameters,
changes the solution, gets it quicker, but lower resolution.

5.1.1 Preconditioner with a starting guess

In many applications, for many reasons, we have a starting guess m0 of the solution. You
might worry that you could not find the starting preconditioned variable p0 = S−1m0

because you did not know the inverse of S. The way to avoid this problem is to reformulate
the problem in terms of a new variable m̃ where m = m̃+m0. Then 0 ≈ Fm−d becomes
0 ≈ Fm̃ − (d − Fm0) or 0 ≈ Fm̃ − d̃. Thus we have accomplished the goal of taking a
problem with a nonzero starting model and converting it a problem of the same type with
a zero starting model. Thus we do not need the inverse of S because the iteration starts
from m̃ = 0 so p0 = 0.

5.2 PRECONDITIONING THE REGULARIZATION

The basic formulation of a geophysical estimation problem consists of setting up two goals,
one for data fitting, and the other for model shaping. With two goals, preconditioning is
somewhat different. The two goals may be written as:

0 ≈ Fm− d (5.4)
0 ≈ Am (5.5)

which defines two residuals, a so-called “data residual” and a “model residual” that are
usually minimized by conjugate-gradient, least-squares methods.

To fix ideas, let us examine a toy example. The data and the first three rows of the
matrix below are random numbers truncated to integers. The model roughening operator
A is a first differencing operator times 100.

5.2. PRECONDITIONING THE REGULARIZATION 119

d(m) F(m,n) iter Norm

--- -- ---- -----------

41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 20.00396538

33. 8. -86. 72. 87. -41. -3. -29. 29. -66. 50. 2 12.14780140

-58. 84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 8.94393635

0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 6.04517126

0. -100. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 2.64737511

0. 0.-100. 100. 0. 0. 0. 0. 0. 0. 0. 6 0.79238468

0. 0. 0.-100. 100. 0. 0. 0. 0. 0. 0. 7 0.46083349

0. 0. 0. 0.-100. 100. 0. 0. 0. 0. 0. 8 0.08301232

0. 0. 0. 0. 0.-100. 100. 0. 0. 0. 0. 9 0.00542009

0. 0. 0. 0. 0. 0.-100. 100. 0. 0. 0. 10 0.00000565

0. 0. 0. 0. 0. 0. 0.-100. 100. 0. 0. 11 0.00000026

0. 0. 0. 0. 0. 0. 0. 0.-100. 100. 0. 12 0.00000012

0. 0. 0. 0. 0. 0. 0. 0. 0.-100. 100. 13 0.00000000

Notice at the tenth iteration, the residual suddenly plunges 4 significant digits. Since
there are ten unknowns and the matrix is obviously full-rank, conjugate-gradient theory
tells us to expect the exact solution at the tenth iteration. This is the first miracle of
conjugate gradients. (The residual actually does not drop to zero. What is printed in the
Norm column is the square root of the sum of the squares of the residual components at the
iter-th iteration minus that at the last interation.)

5.2.1 The second miracle of conjugate gradients

The second miracle of conjugate gradients is exhibited below. The data and data fitting
matrix are the same, but the model damping is simplified.

d(m) F(m,n) iter Norm

--- -- ---- ----------

41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 3.64410686

33. 8. -86. 72. 87. -41. -3. -29. 29. -66. 50. 2 0.31269890

-58. 84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 -0.00000021

0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 -0.00000066

0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 -0.00000080

0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 6 -0.00000065

0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 7 -0.00000088

0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 8 -0.00000074

0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 9 -0.00000035

0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 10 -0.00000037

0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 11 -0.00000018

0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 12 0.00000000

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.00000000

Even though the matrix is full-rank, we see the residual drop about 6 decimal places after the
third iteration! This convergence behavior is well known in the computational mathematics
literature. Despite its practical importance, it doesn’t seem to have a name or identified
discoverer. So I call it the “second miracle.”

Practitioners usually don’t like the identity operator for model-shaping. Generally they
prefer to penalize wiggliness. For practitioners, the lesson of the second miracle of conjugate
gradients is that we have a choice of many iterations, or learning to transform independent
variables so that the regularization operator becomes an identity matrix. Basically, such a

120 CHAPTER 5. PRECONDITIONING

transformation reduces the iteration count from something about the size of the model
space to something about the size of the data space. Such a transformation is called
preconditioning. In practice, data is often accumulated in bins. Then the iteration count is
reduced (in principle) to the count of full bins and should be independent of the count of
the empty bins. This allows refining the bins, enhancing the resolution.

More generally, the model goal 0 ≈ Am introduces a roughening operator like a gradient,
Laplacian (and in chapter 6 a Prediction-Error Filter (PEF)). Thus the model goal is usually
a filter, unlike the data-fitting goal which involves all manner of geometry and physics. When
the model goal is a filter its inverse is also a filter. Of course this includes multidimensional
filters with a helix.

The preconditioning transformation m = Sp gives us

0 ≈ FSp− d
0 ≈ ASp

(5.6)

The operator A is a roughener while S is a smoother. The choices of both A and S are
somewhat subjective. This suggests that we eliminate A altogether by defining it to be
proportional to the inverse of S, thus AS = I. The fitting goals become

0 ≈ FSp− d
0 ≈ ε p

(5.7)

which enables us to benefit from the “second miracle”. After finding p, we obtain the final
model with m = Sp.

5.2.2 Importance of scaling

Another simple toy example shows us the importance of scaling. We use the same example
as above except that the i-th column is multiplied by i/10 which means the i-th model
variable has been divided by i/10.

d(m) F(m,n) iter Norm

--- -- ---- -----------

41. -6. -18. -7. -5. -36. 37. -19. -15. 21. -55. 1 11.59544849

33. 1. -17. 22. 35. -20. -2. -20. 23. -59. 50. 2 6.97337770

-58. 8. -10. 24. 18. -26. -31. 6. 69. 69. 50. 3 5.64414406

0. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 4.32118177

0. 0. 20. 0. 0. 0. 0. 0. 0. 0. 0. 5 2.64755201

0. 0. 0. 30. 0. 0. 0. 0. 0. 0. 0. 6 2.01631355

0. 0. 0. 0. 40. 0. 0. 0. 0. 0. 0. 7 1.23219979

0. 0. 0. 0. 0. 50. 0. 0. 0. 0. 0. 8 0.36649203

0. 0. 0. 0. 0. 0. 60. 0. 0. 0. 0. 9 0.28528941

0. 0. 0. 0. 0. 0. 0. 70. 0. 0. 0. 10 0.06712411

0. 0. 0. 0. 0. 0. 0. 0. 80. 0. 0. 11 0.00374284

0. 0. 0. 0. 0. 0. 0. 0. 0. 90. 0. 12 -0.00000040

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.00000000

We observe that solving the same problem for the scaled variables has required a severe
increase in the number of iterations required to get the solution. We lost the benefit of the
second CG miracle. Even the rapid convergence predicted for the 10-th iteration is delayed
until the 12-th.

5.2. PRECONDITIONING THE REGULARIZATION 121

5.2.3 Statistical interpretation

This book is not a statistics book. Never-the-less, many of you have some statistical knowl-
edge that allows you a statistical interpretation of these views of preconditioning.

A statistical concept is that we can combine many streams of random numbers into a
composite model. Each stream of random numbers is generally taken to be uncorrelated with
the others, to have zero mean, and to have the same variance as all the others. This is often
abbreviated as IID, denoting Independent, Identically Distributed. Linear combinations
like filtering and weighting operations of these IID random streams can build correlated
random functions much like those observed in geophysics. A geophysical practitioner seeks
to do the inverse, to operate on the correlated unequal random variables and create the
statistical ideal random streams. The identity matrix required for the “second miracle”,
and our search for a good preconditioning transformation are related ideas. The relationship
will become more clear in chapter 6 when we learn how to estimate the best roughening
operator A as a prediction-error filter.

Two philosophies to find a preconditioner:

1. Dream up a smoothing operator S.

2. Estimate a prediction-error filter A, and then use its inverse S = A−1.

Deconvolution on a helix is an all-purpose preconditioning strategy for multidimen-
sional model regularization.

The outstanding acceleration of convergence by preconditioning suggests that the phi-
losophy of image creation by optimization has a dual orthonormality: First, Gauss (and
common sense) tells us that the data residuals should be roughly equal in size. Likewise
in Fourier space they should be roughly equal in size, which means they should be roughly
white, i.e. orthonormal. (I use the word “orthonormal” because white means the autocor-
relation is an impulse, which means the signal is statistically orthogonal to shifted versions
of itself.) Second, to speed convergence of iterative methods, we need a whiteness, another
orthonormality, in the solution. The map image, the physical function that we seek, might
not be itself white, so we should solve first for another variable, the whitened map image,
and as a final step, transform it to the “natural colored” map.

5.2.4 The preconditioned solver

Summing up the ideas above, we start from fitting goals

0 ≈ Fm − d
0 ≈ Am

(5.8)

and we change variables from m to p using m = A−1p

0 ≈ Fm − d = FA−1 p − d
0 ≈ Am = I p

(5.9)

122 CHAPTER 5. PRECONDITIONING

Preconditioning means iteratively fitting by adjusting the p variables and then finding the
model by using m = A−1p.

5.3 OPPORTUNITIES FOR SMART DIRECTIONS

Recall the fitting goals (5.10)

0 ≈ rd = Fm − d = FA−1 p − d
0 ≈ rm = Am = I p

(5.10)

Without preconditioning we have the search direction

∆mbad =
[

F′ A′] [
rd

rm

]
(5.11)

and with preconditioning we have the search direction

∆pgood =
[

(FA−1)′ I
] [

rd

rm

]
(5.12)

The essential feature of preconditioning is not that we perform the iterative optimization
in terms of the variable p. The essential feature is that we use a search direction that is a
gradient with respect to p′ not m′. Using Am = p we have A∆m = ∆p. This enables us
to define a good search direction in model space.

∆mgood = A−1∆pgood = A−1(A−1)′F′rd + A−1rm (5.13)

Define the gradient by g = F′rd and notice that rm = p.

∆mgood = A−1(A−1)′ g + m (5.14)

The search direction (5.14) shows a positive-definite operator scaling the gradient. Each
component of any gradient vector is independent of each other. All independently point a
direction for descent. Obviously, each can be scaled by any positive number. Now we have
found that we can also scale a gradient vector by a positive definite matrix and we can still
expect the conjugate-direction algorithm to descend, as always, to the “exact” answer in a
finite number of steps. This is because modifying the search direction with A−1(A−1)′ is
equivalent to solving a conjugate-gradient problem in p.

5.4 NULL SPACE AND INTERVAL VELOCITY

A bread-and-butter problem in seismology is building the velocity as a function of depth (or
vertical travel time) starting from certain measurements. The measurements are described
elsewhere (BEI for example). They amount to measuring the integral of the velocity squared
from the surface down to the reflector. It is known as the RMS (root-mean-square) velocity.
Although good quality echos may arrive often, they rarely arrive continuously for all depths.
Good information is interspersed unpredictably with poor information. Luckily we can also

5.4. NULL SPACE AND INTERVAL VELOCITY 123

estimate the data quality by the “coherency” or the “stack energy”. In summary, what
we get from observations and preprocessing are two functions of travel-time depth, (1) the
integrated (from the surface) squared velocity, and (2) a measure of the quality of the
integrated velocity measurement. Some definitions:

d is a data vector whose components range over the vertical traveltime depth τ , and whose
component values contain the scaled RMS velocity squared τv2

RMS/∆τ where τ/∆τ
is the index on the time axis.

W is a diagonal matrix along which we lay the given measure of data quality. We will use
it as a weighting function.

C is the matrix of causal integration, a lower triangular matrix of ones.

D is the matrix of causal differentiation, namely, D = C−1.

u is a vector whose components range over the vertical traveltime depth τ , and whose
component values contain the interval velocity squared v2

interval.

From these definitions, under the assumption of a stratified earth with horizontal reflectors
(and no multiple reflections) the theoretical (squared) interval velocities enable us to define
the theoretical (squared) RMS velocities by

Cu = d (5.15)

With imperfect data, our data fitting goal is to minimize the residual

0 ≈ W [Cu− d] (5.16)

To find the interval velocity where there is no data (where the stack power theoretically
vanishes) we have the “model damping” goal to minimize the wiggliness p of the squared
interval velocity u.

0 ≈ Du = p (5.17)

We precondition these two goals by changing the optimization variable from interval
velocity squared u to its wiggliness p. Substituting u = Cp gives the two goals expressed
as a function of wiggliness p.

0 ≈ W
[
C2p− d

]
(5.18)

0 ≈ ε p (5.19)

5.4.1 Balancing good data with bad

Choosing the size of ε chooses the stiffness of the curve that connects regions of good data.
Our first test cases gave solutions that we interpreted to be too stiff at early times and too
flexible at later times. This leads to two possible ways to deal with the problem. One way
modifies the model shaping and the other modifies the data fitting. The program below
weakens the data fitting weight with time. This has the same effect as stiffening the model
shaping with time.

124 CHAPTER 5. PRECONDITIONING

Figure 5.1: Raw CMP gather (left), Semblance scan (middle), and semblance value used
for weighting function (right). (Clapp) prc/bob clapp

Figure 5.2: Observed RMS velocity and that predicted by a stiff model with ε = 4. (Clapp)
prc/bob stiff

5.4. NULL SPACE AND INTERVAL VELOCITY 125

Figure 5.3: Observed RMS velocity and that predicted by a flexible model with ε = .25
(Clapp) prc/bob flex

5.4.2 Lateral variations

The analysis above appears one dimensional in depth. Conventional interval velocity esti-
mation builds a velocity-depth model independently at each lateral location. Here we have
a logical path for combining measurements from various lateral locations. We can change
the regularization to something like 0 ≈ ∇u. Instead of merely minimizing the vertical
gradient of velocity we minimize its spatial gradient. Luckily we have preconditioning and
the helix to speed the solution.

5.4.3 Blocky models

Sometimes we seek a velocity model that increases smoothly with depth through our scat-
tered measurements of good-quality RMS velocities. Other times, we seek a blocky model.
(Where seismic data is poor, a well log could tell us whether to choose smooth or blocky.)
Here we see an estimation method that can choose the blocky alternative, or some combi-
nation of smooth and blocky.

Consider the five layer model in Figure 5.4. Each layer has unit traveltime thickness (so
integration is simply summation). Let the squared interval velocities be (a, b, c, d, e) with
strong reliable reflections at the base of layer c and layer e, and weak, incoherent, “bad”
reflections at bases of (a, b, d). Thus we measure V 2

c the RMS velocity squared of the top
three layers and V 2

e that for all five layers. Since we have no reflection from at the base of
the fourth layer, the velocity in the fourth layer is not measured but a matter for choice.
In a smooth linear fit we would want d = (c + e)/2. In a blocky fit we would want d = e.

Our screen for good reflections looks like (0, 0, 1, 0, 1) and our screen for bad ones looks
like the complement (1, 1, 0, 1, 0). We put these screens on the diagonals of diagonal matrices

126 CHAPTER 5. PRECONDITIONING

Figure 5.4: A layered earth model.
The layer interfaces cause reflections.
Each layer has a constant velocity in
its interior. prc/. rosales

G and B. Our fitting goals are:

3V 2
c ≈ a + b + c (5.20)

5V 2
e ≈ a + b + c + d + e (5.21)

u0 ≈ a (5.22)
0 ≈ −a + b (5.23)
0 ≈ −b + c (5.24)
0 ≈ −c + d (5.25)
0 ≈ −d + e (5.26)

For the blocky solution, we do not want the fitting goal (5.25). Further explanations await
completion of examples.

5.5 INVERSE LINEAR INTERPOLATION

Figure 5.5: The input data are irreg-
ularly sampled. prc/sep94 data

The first example is a simple synthetic test for 1-D inverse interpolation. The input
data were randomly subsampled (with decreasing density) from a sinusoid (Figure 5.5).
The forward operator L in this case is linear interpolation. We seek a regularly sampled
model that could predict the data with a forward linear interpolation. Sparse irregular
distribution of the input data makes the regularization enforcement a necessity. I applied
convolution with the simple (1,−1) difference filter as the operator D that forces model
continuity (the first-order spline). An appropriate preconditioner S in this case is recursive
causal integration.

5.5. INVERSE LINEAR INTERPOLATION 127

Figure 5.6: Convergence history of inverse linear interpolation. Left: regularization, right:
preconditioning. The regularization operator A is the derivative operator (convolution with
(1,−1). The preconditioning operator S is causal integration. prc/sep94 conv

128 CHAPTER 5. PRECONDITIONING

As expected, preconditioning provides a much faster rate of convergence. Since itera-
tion to the exact solution is never achieved in large-scale problems, the results of iterative
optimization may turn out quite differently. Bill Harlan points out that the two goals in
(5.8) conflict with each other: the first one enforces “details” in the model, while the second
one tries to smooth them out. Typically, regularized optimization creates a complicated
model at early iterations. At first, the data fitting goal (5.8) plays a more important role.
Later, the regularization goal (5.8) comes into play and simplifies (smooths) the model as
much as needed. Preconditioning acts differently. The very first iterations create a simpli-
fied (smooth) model. Later, the data fitting goal adds more details into the model. If we
stop the iterative process early, we end up with an insufficiently complex model, not in an
insufficiently simplified one. Figure 5.6 provides a clear illustration of Harlan’s observation.

Figure 5.7 measures the rate of convergence by the model residual, which is a distance
from the current model to the final solution. It shows that preconditioning saves many
iterations. Since the cost of each iteration for each method is roughly equal, the efficiency
of preconditioning is evident.

Figure 5.7: Convergence of the
iterative optimization, measured in
terms of the model residual. The
“p” points stand for precondition-
ing; the “r” points, regularization.
prc/sep94 schwab1

5.6 EMPTY BINS AND PRECONDITIONING

There are at least three ways to fill empty bins. Two require a roughening operator A while
the third requires a smoothing operator which (for comparison purposes) we denote A−1.
The three methods are generally equivalent though they differ in important details.

The original way in Chapter 3 is to restore missing data by ensuring that the restored
data, after specified filtering, has minimum energy, say Am ≈ 0. Introduce the selection
mask operator K, a diagonal matrix with ones on the known data and zeros elsewhere (on
the missing data). Thus 0 ≈ A(I−K + K)m or

0 ≈ A(I−K)m + Amk , (5.27)

where we define mk to be the data with missing values set to zero by mk = Km.

A second way to find missing data is with the set of goals

0 ≈ Km − mk

0 ≈ εAm
(5.28)

5.6. EMPTY BINS AND PRECONDITIONING 129

and take the limit as the scalar ε → 0. At that limit, we should have the same result as
equation (5.27).

There is an important philosophical difference between the first method and the second.
The first method strictly honors the known data. The second method acknowledges that
when data misfits the regularization theory, it might be the fault of the data so the data
need not be strictly honored. Just what balance is proper falls to the numerical choice of
ε, a nontrivial topic.

A third way to find missing data is to precondition equation (5.28), namely, try the
substitution m = A−1p.

0 ≈ KA−1p − mk

0 ≈ εp
(5.29)

There is no simple way of knowing beforehand what is the best value of ε. Practitioners like
to see solutions for various values of ε. Of course that can cost a lot of computational effort.
Practical exploratory data analysis is more pragmatic. Without a simple clear theoretical
basis, analysts generally begin from p = 0 and abandon the fitting goal εIp ≈ 0. Implicitly,
they take ε = 0. Then they examine the solution as a function of iteration, imagining that
the solution at larger iterations corresponds to smaller ε. There is an eigenvector analysis
indicating some kind of basis for this approach, but I believe there is no firm guidance.

Before we look at coding details for the three methods of filling the empty bins, we’ll
compare results of trying all three methods. For the roughening operator A, we’ll take the
helix derivative H. This is logically equivalent to roughening with the gradient ∇ because
the (negative) laplacian operator is ∇′∇ = H′H.

5.6.1 SEABEAM: Filling the empty bins with a laplacian

Figure 5.8 shows a day’s worth of data1 collected at sea by SeaBeam, an apparatus for
measuring water depth both directly under a ship, and somewhat off to the sides of the
ship’s track. The data is measurements of depth h(x, y) at miscellaneous locations in the
(x, y)-plane. The locations are scattered about, according to various aspects of the ship’s
navigation and the geometry of the SeaBeam sonic antenna. Figure 5.8 was made by binning
with bin2() on page 12 and equation (1.15). The spatial spectra of the noise in the data
could be estimated where tracks cross over themselves. This might be worth while, but we
do not pursue it now.

Here we focus on the empty mesh locations where no data is recorded (displayed with
the value of the mean depth h̄). These empty bins were filled with module mis2 on page 133.
Results are in Figure 5.9. In Figure 5.9 the left column results from 20 iterations while the
right column results from 100 iterations.

The top row in Figure 5.9 shows that more iterations spreads information further into
the region of missing data.

It turned out that the original method strictly honoring known data gave results so sim-
ilar to the second method (regularizing) that the plots could not be visually distinguished.
The middle row in Figure 5.9 therefore shows the difference in the result of the two methods.

1 I’d like to thank Alistair Harding for this interesting data set named April 18.

130 CHAPTER 5. PRECONDITIONING

Figure 5.8: Depth of the ocean un-
der ship tracks. Empty bins are
displayed with an average depth h̄.
prc/seab seabin

We see an outline of the transition between known and unknown regions. Obviously, the
missing data is pulling known data towards zero.

The bottom row in Figure 5.9 shows that preconditioning spreads information to great
distances much quicker but early iterations make little effort to honor the data. (Even
though these results are for ε = 0.) Later iterations make little change at long distance but
begin to restore sharp details on the small features of the known topography.

What if we can only afford 100 iterations? Perhaps we should first do 50 iterations with
preconditioning to develop the remote part of the solution and then do 50 iterations by one
of the other two methods to be sure we attended to the details near the known data. A
more unified approach (not yet tried, as far as I know) would be to unify the techniques.
The conjugate direction method searches two directions, the gradient and the previous step.
We could add a third direction, the smart direction of equation (5.14). Instead of having a
2× 2 matrix solution like equation (2.70) for two distances, we would need to solve a 3× 3
matrix for three.

Figure 5.9 has a few artifacts connected with the use of the helix derivative. Examine
equation (11) to notice the shape of the helix derivative. In principle, it is infinitely long in
the horizontal axis in both equation (11) and Figure 5.9. In practice, it is truncated. The
truncation is visible as bands along the sides of Figure 5.9.

As a practical matter, no one would use the first two bin filling methods with helix
derivative for the roughener because it is theoretically equivalent to the gradient operator ∇
which has many fewer coefficients. Later, in Chapter 6 we’ll find a much smarter roughening
operator A called the Prediction Error Filter (PEF) which gives better results.

5.6.2 Three codes for inverse masking

The selection (or masking) operator K is implemented in mask() on page 132.

5.6. EMPTY BINS AND PRECONDITIONING 131

Figure 5.9: The ocean bottom restoring missing data with a helix derivative.
prc/seabeam prcfill

132 CHAPTER 5. PRECONDITIONING

filt/lib/mask.c

45 s f a d j n u l l (adj , add , nx , ny , x , y) ;
46

47 for (i x =0; ix < nx ; i x++) {
48 i f (m[ix]) {
49 i f (adj) x [i x] += y [ix] ;
50 else y [i x] += x [ix] ;

All the results shown in Figure 5.9 were created with the module mis2 on the facing
page. Code locations with style=0,1,2 correspond to the fitting goals (5.27), (5.28), (5.29).

5.7 THEORY OF UNDERDETERMINED LEAST-SQUARES

Construct theoretical data with
d = Fm (5.30)

Assume there are fewer data points than model points and that the matrix FF′ is invertible.
From the theoretical data we estimate a model m0 with

m0 = F′(FF′)−1d (5.31)

To verify the validity of the estimate, insert the estimate (5.31) into the data modeling
equation (5.30) and notice that the estimate m0 predicts the correct data. Notice that
equation (5.31) is not the same as equation (2.30) which we derived much earlier. What’s
the difference? The central issue is which matrix of FF′ and F′F actually has an inverse. If
F is a rectangular matrix, then it is certain that one of the two is not invertible. (There are
plenty of real cases where neither matrix is invertible. That’s one reason we use iterative
solvers.) Here we are dealing with the case with more model points than data points.

Now we will show that of all possible models m that predict the correct data, m0 has
the least energy. (I’d like to thank Sergey Fomel for this clear and simple proof that does
not use Lagrange multipliers.) First split (5.31) into an intermediate result d0 and final
result:

d0 = (FF′)−1d (5.32)
m0 = F′d0 (5.33)

Consider another model (x not equal to zero)

m = m0 + x (5.34)

which fits the theoretical data d = F(m0 + x). Since d = Fm0, we see that x is a null
space vector.

Fx = 0 (5.35)

5.7. THEORY OF UNDERDETERMINED LEAST-SQUARES 133

user/gee/mis2.c

25 void mis2 (int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
26 int nx /∗ model s i z e ∗/ ,
27 f loat ∗xx /∗ model ∗/ ,
28 s f f i l t e r aa /∗ h e l i x f i l t e r ∗/ ,
29 const bool ∗known /∗ mask f o r known data ∗/ ,
30 f loat eps /∗ r e g u l a r i z a t i o n parameter ∗/ ,
31 bool doprec /∗ to app ly p r e cond i t i on ing ∗/)
32 /∗< i n t e r p o l a t e >∗/
33 {
34 int i x ;
35 f loat ∗dd ;
36

37 i f (doprec) { /∗ precond i t i oned ∗/
38 s f ma s k i n i t (known) ;
39 p o l y d i v i n i t (nx , aa) ;
40 s f s o l v e r p r e c (s f mask lop , s f c g s t ep , po lyd iv lop ,
41 nx , nx , nx , xx , xx , n i t e r , eps , ”end”) ;
42 po l y d i v c l o s e () ;
43 } else { /∗ r e g u l a r i z e d ∗/
44 dd = s f f l o a t a l l o c (nx) ;
45 for (i x =0; ix < nx ; i x++) {
46 dd [ix]=0 . ;
47 }
48

49 s f h e l i c o n i n i t (aa) ;
50 s f s o l v e r (s f h e l i c o n l o p , s f c g s t ep , nx , nx , xx , dd , n i t e r ,
51 ”known” , known , ”x0” , xx , ”end”) ;
52 f r e e (dd) ;
53 }
54 s f c g s t e p c l o s e () ;
55 }

134 CHAPTER 5. PRECONDITIONING

First we see that m0 is orthogonal to x because

m′
0x = (F′d0)′x = d′0Fx = d′00 = 0 (5.36)

Therefore,

m′m = m′
0m0 + x′x + 2x′m0 = m′

0m0 + x′x ≥ m′
0m0 (5.37)

so adding null space to m0 can only increase its energy. In summary, the solution m0 =
F′(FF′)−1d has less energy than any other model that satisfies the data.

Not only does the theoretical solution m0 = F′(FF′)−1d have minimum energy, but the
result of iterative descent will too, provided that we begin iterations from m0 = 0 or any
m0 with no null-space component. In (5.36) we see that the orthogonality m′

0x = 0 does
not arise because d0 has any particular value. It arises because m0 is of the form F′d0.
Gradient methods contribute ∆m = F′r which is of the required form.

5.8 SCALING THE ADJOINT

First I remind you of a rarely used little bit of mathematical notation. Given a vector m
with components (m1,m2,m3), the notation diag m means

diag m =

 m1 0 0
0 m2 0
0 0 m3

 (5.38)

Given the usual linearized fitting goal between data space and model space, d ≈ Fm, the
simplest image of the model space results from application of the adjoint operator m̂ = F′d.
Unless F has no physical units, however, the physical units of m̂ do not match those of
m, so we need a scaling factor. The theoretical solution mtheor = (F′F)−1F′d tells us that
the scaling units should be those of (F′F)−1. We are going to approximate (F′F)−1 by a
diagonal matrix W2 with the correct units so m̂ = W2F′d.

What we use for W will be a guess, simply a guess. If it works better than nothing, we’ll
be happy, and if it doesn’t we’ll forget about it. Experience shows it is a good idea to try.
Common sense tells us to insist that all elements of W2 are positive. W2 is a square matrix
of size of model space. From any vector m̃ in model space with all positive components,
we could guess that W2 be diag m̃ to any power. To get the right physical dimensions we
choose m̃ = 1, a vector of all ones and choose

W2 =
1

diag F′F1
(5.39)

A problem with the choice (5.39) is that some components might be zero or negative. Well,
we can take the square root of the squares of components and/or smooth the result.

To go beyond the scaled adjoint we can use W as a preconditioner. To use W as a
preconditioner we define implicitly a new set of variables p by the substitution m = Wp.
Then d ≈ Fm = FWp. To find p instead of m, we iterate with the operator FW instead
of with F. As usual, the first step of the iteration is to use the adjoint of d ≈ FWp to form

5.8. SCALING THE ADJOINT 135

the image p̂ = (FW)′d. At the end of the iterations, we convert from p back to m with
m = Wp. The result after the first iteration m̂ = Wp̂ = W(FW)′d = W2F′d turns out
to be the same as scaling.

By (5.39), W has physical units inverse to F. Thus the transformation FW has no
units so the p variables have physical units of data space. Experimentalists might enjoy
seeing the solution p with its data units more than viewing the solution m with its more
theoretical model units.

The theoretical solution for underdetermined systems m = F′(FF′)−1d suggests an
alternate approach using instead m̂ = F′W2

dd. This diagonal weighting matrix W2
d must

be drawn from vectors in data space. Again I chose a vector of all 1’s getting the weight

W2
d =

1
diag FF′1

(5.40)

My choice of a vector of 1’s is quite arbitrary. I might as well have chosen a vector
of random numbers. Bill Symes, who suggested this approach to me, suggests using an
observed data vector d for the data space weight, and F′d for the model space weight. This
requires an additional step, dividing out the units of the data d.

Experience tells me that a broader methodology than all above is needed. Appropriate
scaling is required in both data space and model space. We need two other weights Wm

and Wd where m̂ = WmF′Wdd.

I have a useful practical example (stacking in v(z) media) in another of my electronic
books (BEI), where I found both Wm and Wd by iterative guessing. First assume Wd = I
and estimate Wm as above. Then assume you have the correct Wm and estimate Wd as
above. Iterate. (Perhaps some theorist can find a noniterative solution.) I believe this
iterative procedure leads us to the best diagonal pre- and post- multipliers for any operator
F. By this I mean that the modified operator (WdFWm) is as close to being unitary as we
will be able to obtain with diagonal transformation. Unitary means it is energy conserving
and that the inverse is simply the conjugate transpose.

What good is it that (WdFWm)′(WdFWm) ≈ I? It gives us the most rapid convergence
of least squares problems of the form

0 ≈ Wd(Fm− d) = Wd(FWmp− d) (5.41)

Thus it defines for us the best diagonal transform to a preconditioning variable p = W−1
m m

to use during iteration, and suggests to us what residual weighting function we need to
use if rapid convergence is a high priority. Suppose we are not satisfied with Wd being
the weighting function for residuals. Equation (5.41) could still help us speed iteration.
Instead of beginning iteration with p = 0, we could begin from the solution p to the
regression (5.41).

The PhD thesis of James Rickett experiments extensively with data space and model
space weighting functions in the context of seismic velocity estimation.

136 CHAPTER 5. PRECONDITIONING

5.9 A FORMAL DEFINITION FOR ADJOINTS

In mathematics, adjoints are defined a little differently than we have defined them here
(as matrix transposes).2 The mathematician begins by telling us that we cannot simply
form any dot product we want. We are not allowed to take the dot product of any two
vectors in model space m1 ·m2 or data space d1 · d2. Instead, we must first transform
them to a preferred coordinate system. Say m̃1 = Mm1 and d̃1 = Dd1, etc for other
vectors. We complain we do not know M and D. They reply that we do not really
need to know them but we do need to have the inverses (aack!) of M′M and D′D. A
pre-existing common notation is σ−2

m = M′M and σ−2
d = D′D. Now the mathematician

buries the mysterious new positive-definite matrix inverses in the definition of dot product
< m1,m2 >= m′

1M
′Mm2 = m′

1σ
−2
m m2 and likewise with < d1,d2 >. This suggests a total

reorganization of our programs. Instead of computing (m′
1M

′)(Mm2) we could compute
m′

1(σ
−2
m m2). Indeed, this is the “conventional” approach. This definition of dot product

would be buried in the solver code. The other thing that would change would be the search
direction ∆m. Instead of being the gradient as we have defined it ∆m = L′r, it would
be ∆m = σ−2

m L′σ−2
d r. A mathematician would define the adjoint of L to be σ−2

m L′σ−2
d .

(Here L′ remains matrix transpose.) You might notice this approach nicely incorporates
both residual weighting and preconditioning while yet evading the issue of where we get
the matrices σ2

m and σ2
d or how we invert them. Fortunately, upcoming chapter 6 suggests

how, in image estimation problems, to obtain sensible estimates of the elusive operators M
and D. Paranthetically, modeling calculations in physics and engineering often use similar
mathematics in which the role of M′M is not so mysterious. Kinetic energy is mass times
velocity squared. Mass can play the role of M′M.

So, should we continue to use (m′
1M

′)(Mm2) or should we take the conventional route
and go with m′

1(σ
−2
m m2)? One day while benchmarking a wide variety of computers I was

shocked to see some widely differing numerical results. Now I know why. Consider adding
107 identical positive floating point numbers, say 1.0’s, in an arithmetic with precision of
10−6. After you have added in the first 106 numbers, the rest will all truncate in the roundoff
and your sum will be wrong by a factor of ten. If the numbers were added in pairs, and
then the pairs added, etc, there would be no difficulty. Precision is scary stuff!

It is my understanding and belief that there is nothing wrong with the approach of this
book, in fact, it seems to have some definite advantages. While the conventional approach
requires one to compute the adjoint correctly, we do not. The method of this book (which
I believe is properly called conjugate directions) has a robustness that, I’m told, has been
superior in some important geophysical applications. The conventional approach seems to
get in trouble when transpose operators are computed with insufficient precision.

2 I would like to thank Albert Tarantola for suggesting this topic.

Chapter 6

Multidimensional autoregression

The many applications of least squares to the one-dimensional convolution operator con-
stitute the subject known as “time-series analysis.” The autoregression filter, also known
as the prediction-error filter (PEF), gathers statistics for us, not the autocorrelation or the
spectrum directly but it gathers them indirectly as the inverse of the amplitude spectrum of
its input. The PEF plays the role of the so-called “inverse-covariance matrix” in statistical
estimation theory. Given the PEF, we use it to find missing portions of signals.

6.0.1 Time domain versus frequency domain

In the simplest applications, solutions can be most easily found in the frequency domain.
When complications arise, it is better to use the time domain, to directly apply the convo-
lution operator and the method of least squares.

A first complicating factor in the frequency domain is a required boundary in the time
domain, such as that between past and future, or requirements that a filter be nonzero in
a stated time interval. Another factor that attracts us to the time domain rather than the
frequency domain is weighting functions.

Weighting functions are appropriate whenever a signal or image amplitude varies from
place to place. Much of the literature on time-series analysis applies to the limited case of
uniform weighting functions. Such time series are said to be “stationary.” This means that
their statistical properties do not change in time. In real life, particularly in the analysis
of echos, signals are never stationary in time and space. A stationarity assumption is a
reasonable starting assumption, but we should know how to go beyond it so we can take
advantage of the many opportunities that do arise. In order of increasing difficulty in the
frequency domain are the following complications:

1. A time boundary such as between past and future.

2. More time boundaries such as delimiting a filter.

3. More time boundaries such as erratic locations of missing data.

4. Nonstationary signal, i.e., time-variable weighting.

137

138 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

5. Time-axis stretching such as normal moveout.

We will not have difficulty with any of these complications here, because we will stay
in the time domain and set up and solve optimization problems by use of the conjugate-
direction method. Thus we will be able to cope with great complexity in goal formulation
and get the right answer without approximations. By contrast, analytic or partly analytic
methods can be more economical, but they generally solve somewhat different problems
than those given to us by nature.

6.1 SOURCE WAVEFORM, MULTIPLE REFLECTIONS

Here we devise a simple mathematical model for deep water bottom multiple reflections.1

There are two unknown waveforms, the source waveform S(ω) and the ocean-floor reflection
F (ω). The water-bottom primary reflection P (ω) is the convolution of the source waveform
with the water-bottom response; so P (ω) = S(ω)F (ω). The first multiple reflection M(ω)
sees the same source waveform, the ocean floor, a minus one for the free surface, and the
ocean floor again. Thus the observations P (ω) and M(ω) as functions of the physical
parameters are

P (ω) = S(ω) F (ω) (6.1)
M(ω) = −S(ω) F (ω)2 (6.2)

Algebraically the solutions of equations (6.1) and (6.2) are

F (ω) = −M(ω)/P (ω) (6.3)
S(ω) = −P (ω)2/M(ω) (6.4)

These solutions can be computed in the Fourier domain by simple division. The difficulty
is that the divisors in equations (6.3) and (6.4) can be zero, or small. This difficulty can be
attacked by use of a positive number ε to stabilize it. For example, multiply equation (6.3)
on top and bottom by P ′(ω) and add ε > 0 to the denominator. This gives

F (ω) = − M(ω)P ′(ω)
P (ω)P ′(ω) + ε

(6.5)

where P ′(ω) is the complex conjugate of P (ω). Although the ε stabilization seems nice, it
apparently produces a nonphysical model. For ε large or small, the time-domain response
could turn out to be of much greater duration than is physically reasonable. This should
not happen with perfect data, but in real life, data always has a limited spectral band of
good quality.

Functions that are rough in the frequency domain will be long in the time domain. This
suggests making a short function in the time domain by local smoothing in the frequency
domain. Let the notation < · · · > denote smoothing by local averaging. Thus, to specify
filters whose time duration is not unreasonably long, we can revise equation (6.5) to

F (ω) = − < M(ω)P ′(ω) >

< P (ω)P ′(ω) >
(6.6)

1 For this short course I am omitting here many interesting examples of multiple reflections shown in my
1992 book, PVI.

6.2. TIME-SERIES AUTOREGRESSION 139

where instead of deciding a size for ε we need to decide how much smoothing. I find that
smoothing has a simpler physical interpretation than choosing ε. The goal of finding the
filters F (ω) and S(ω) is to best model the multiple reflections so that they can be subtracted
from the data, and thus enable us to see what primary reflections have been hidden by the
multiples.

These frequency-duration difficulties do not arise in a time-domain formulation. Unlike
in the frequency domain, in the time domain it is easy and natural to limit the duration
and location of the nonzero time range of F (ω) and S(ω). First express (6.3) as

0 = P (ω)F (ω) + M(ω) (6.7)

To imagine equation (6.7) as a fitting goal in the time domain, instead of scalar functions
of ω, think of vectors with components as a function of time. Thus f is a column vector
containing the unknown sea-floor filter, m contains the “multiple” portion of a seismogram,
and P is a matrix of down-shifted columns, each column being the “primary”.

0 ≈ r =

r1

r2

r3

r4

r5

r6

r7

r8

=

p1 0 0
p2 p1 0
p3 p2 p1

p4 p3 p2

p5 p4 p3

p6 p5 p4

0 p6 p5

0 0 p6

 f1

f2

f3

 +

m1

m2

m3

m4

m5

m6

m7

m8

(6.8)

6.2 TIME-SERIES AUTOREGRESSION

Given yt and yt−1, you might like to predict yt+1. The prediction could be a scaled sum or
difference of yt and yt−1. This is called “autoregression” because a signal is regressed on
itself. To find the scale factors you would optimize the fitting goal below, for the prediction
filter (f1, f2):

0 ≈ r =

y1 y0

y2 y1

y3 y2

y4 y3

y5 y4

[

f1

f2

]
−

y2

y3

y4

y5

y6

 (6.9)

(In practice, of course the system of equations would be much taller, and perhaps somewhat
wider.) A typical row in the matrix (6.9) says that yt+1 ≈ ytf1+yt−1f2 hence the description
of f as a “prediction” filter. The error in the prediction is simply the residual. Define the
residual to have opposite polarity and merge the column vector into the matrix, so you get

0
0
0
0
0

 ≈ r =

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

 1
−f1

−f2

 (6.10)

140 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

which is a standard form for autoregressions and prediction error.

Multiple reflections are predictable. It is the unpredictable part of a signal, the pre-
diction residual, that contains the primary information. The output of the filter (1,−f1,−f2) =
(a0, a1, a2) is the unpredictable part of the input. This filter is a simple example of a
“prediction-error” (PE) filter. It is one member of a family of filters called “error filters.”

The error-filter family are filters with one coefficient constrained to be unity and various
other coefficients constrained to be zero. Otherwise, the filter coefficients are chosen to have
minimum power output. Names for various error filters follow:

(1, a1, a2, a3, · · · , an) prediction-error (PE) filter
(1, 0, 0, a3, a4, · · · , an) gapped PE filter with a gap
(a−m, · · · , a−2, a−1, 1, a1, a2, a3, · · · , an) interpolation-error (IE) filter

We introduce a free-mask matrix K which “passes” the freely variable coefficients in the
filter and “rejects” the constrained coefficients (which in this first example is merely the
first coefficient a0 = 1).

K =

 0 . .
. 1 .
. . 1

 (6.11)

To compute a simple prediction error filter a = (1, a1, a2) with the CD method, we write
(6.9) or (6.10) as

0 ≈ r =

y2 y1 y0

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

 0 · ·
· 1 ·
· · 1

 1
a1

a2

 +

y2

y3

y4

y5

y6

 (6.12)

Let us move from this specific fitting goal to the general case. (Notice the similarity of the
free-mask matrix K in this filter estimation problem with the free-mask matrix J in missing
data goal (3.3).) The fitting goal is,

0 ≈ Ya (6.13)
0 ≈ Y(I−K + K)a (6.14)
0 ≈ YKa + Y(I−K)a (6.15)
0 ≈ YKa + Ya0 (6.16)
0 ≈ YKa + y (6.17)

0 ≈ r = YKa + r0 (6.18)

which means we initialize the residual with r0 = y. and then iterate with

∆a ←− K′Y′ r (6.19)
∆r ←− YK ∆a (6.20)

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 141

6.3 PREDICTION-ERROR FILTER OUTPUT IS WHITE

The relationship between spectrum and PEF

Knowledge of an autocorrelation function is equivalent to knowledge of a spectrum. The
two are simply related by Fourier transform. A spectrum or an autocorrelation function
encapsulates an important characteristic of a signal or an image. Generally the spectrum
changes slowly from place to place although it could change rapidly. Of all the assumptions
we could make to fill empty bins, one that people usually find easiest to agree with is that
the spectrum should be the same in the empty-bin regions as where bins are filled. In
practice we deal with neither the spectrum nor its autocorrelation but with a third object.
This third object is the Prediction Error Filter (PEF), the filter in equation (6.10).

Take equation (6.10) for r and multiply it by the adjoint r′ getting a quadratic form in the
PEF coefficients. Minimizing this quadratic form determines the PEF. This quadratic form
depends only on the autocorrelation of the original data yt, not on the data yt itself. Clearly
the PEF is unchanged if the data has its polarity reversed or its time axis reversed. Indeed,
we’ll see here that knowledge of the PEF is equivalent to knowledge of the autocorrelation
or the spectrum.

Undoing convolution in nature

Prediction-error filtering is also called “deconvolution”. This word goes back to very basic
models and concepts. In this model one envisions a random white-spectrum excitation
function x existing in nature, and this excitation function is somehow filtered by unknown
natural processes, with a filter operator B producing an output y in nature that becomes
the input y to our computer programs. This is sketched in Figure 6.1. Then we design a

Figure 6.1: Flow of information
from nature, to observation, into
computer. mda/XFig systems

x y r = x

Nature Computer

B

?

A

prediction-error filter A on y, which yields a white-spectrumed output residual r. Because
r and x theoretically have the same spectrum, the tantalizing prospect is that maybe r
equals x, meaning that the PEF A has deconvolved the unknown convolution B.

Causal with causal inverse

Theoretically, a PEF is a causal filter with a causal inverse. This adds confidence to the
likelihood that deconvolution of natural processes with a PEF might get the correct phase
spectrum as well as the correct amplitude spectrum. Naturally, the PEF does not give
the correct phase to an “all-pass” filter. That is a filter with a phase shift but a constant
amplitude spectrum. (I think most migration operators are in this category.)

142 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Theoretically we should be able to use a PEF in either convolution or polynomial di-
vision. There are some dangers though, mainly connected with dealing with data in small
windows. Truncation phenomena might give us PEF estimates that are causal, but whose
inverse is not, so they cannot be used in polynomial division. This is a lengthy topic in the
classic literature. This old, fascinating subject is examined in my books, FGDP and PVI.
A classic solution is one by John Parker Burg. We should revisit the Burg method in light
of the helix.

PEF output tends to whiteness

The most important property of a prediction-error filter or PEF is that its output tends to
a white spectrum (to be proven here). No matter what the input to this filter, its output
tends to whiteness as the number of the coefficients n → ∞ tends to infinity. Thus, the
PE filter adapts itself to the input by absorbing all its color. This has important statistical
implications and important geophysical implications.

Spectral estimation

The PEF’s output being white leads to an important consequence: To specify a spectrum,
we can give the spectrum (of an input) itself, give its autocorrelation, or give its PEF
coefficients. Each is transformable to the other two. Indeed, an effective mechanism of
spectral estimation, developed by John P. Burg and described in FGDP, is to compute a
PE filter and look at the inverse of its spectrum.

Short windows

The power of a PE filter is that a short filter can often extinguish, and thereby represent,
the information in a long resonant filter. If the input to the PE filter is a sinusoid, it is
exactly predictable by a three-term recurrence relation, and all the color is absorbed by
a three-term PE filter (see exercises). Burg’s spectral estimation is especially effective in
short windows.

Weathered layer resonance

That the output spectrum of a PE filter is white is also useful geophysically. Imagine the
reverberation of the soil layer, highly variable from place to place, as the resonance between
the surface and shallow more-consolidated soil layers varies rapidly with surface location
because of geologically recent fluvial activity. The spectral color of this erratic variation on
surface-recorded seismograms is compensated for by a PE filter. Usually we do not want
PE-filtered seismograms to be white, but once they all have the same spectrum, it is easy
to postfilter them to any desired spectrum.

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 143

6.3.1 PEF whiteness proof in 1-D

The basic idea of least-squares fitting is that the residual is orthogonal to the fitting func-
tions. Applied to the PE filter, this idea means that the output of a PE filter is orthogonal
to lagged inputs. The orthogonality applies only for lags in the past, because prediction
knows only the past while it aims to the future. What we want to show here is different,
namely, that the output is uncorrelated with itself (as opposed to the input) for lags in both
directions; hence the output spectrum is white.

In (6.21) are two separate and independent autoregressions, 0 ≈ Yaa for finding the
filter a, and 0 ≈ Ybb for finding the filter b. By noticing that the two matrices are really
the same (except a row of zeros on the bottom of Ya is a row in the top of Yb) we realize
that the two regressions must result in the same filters a = b, and the residual rb is a shifted
version of ra. In practice, I visualize the matrix being a thousand components tall (or a
million) and a hundred components wide.

0 ≈ ra =

y1 0 0
y2 y1 0
y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

0 y6 y5

0 0 y6

0 0 0

 1
a1

a2

 ; 0 ≈ rb =

0 0 0
y1 0 0
y2 y1 0
y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

0 y6 y5

0 0 y6

 1
b1

b2

 (6.21)

When the energy r′r of a residual has been minimized, the residual r is orthogonal to the
fitting functions. For example, choosing a2 to minimize r′r gives 0 = ∂r′r/∂a2 = 2r′∂r/∂a2.
This shows that r′ is perpendicular to ∂r/∂a2 which is the rightmost column of the Ya

matrix. Thus the vector ra is orthogonal to all the columns in the Ya matrix except the
first (because we do not minimize with respect to a0).

Our goal is a different theorem that is imprecise when applied to the three coefficient
filters displayed in (6.21), but becomes valid as the filter length tends to infinity a =
(1, a1, a2, a3, · · ·) and the matrices become infinitely wide. Actually, all we require is the
last component in b, namely bn tend to zero. This generally happens because as n increases,
yt−n becomes a weaker and weaker predictor of yt.

The matrix Ya contains all of the columns that are found in Yb except the last (and
the last one is not important). This means that ra is not only orthogonal to all of Ya’s
columns (except the first) but ra is also orthogonal to all of Yb’s columns except the last.
Although ra isn’t really perpendicular to the last column of Yb, it doesn’t matter because
that column has hardly any contribution to rb since |bn| << 1. Because ra is (effectively)
orthogonal to all the components of rb, ra is also orthogonal to rb itself. (For any u and v,
if r · u = 0 and r · v = 0 then r · (u + v) = 0 and also r · (a1u + a2v) = 0).

Here is a detail: In choosing the example of equation (6.21), I have shifted the two
fitting problems by only one lag. We would like to shift by more lags and get the same
result. For this we need more filter coefficients. By adding many more filter coefficients
we are adding many more columns to the right side of Yb. That’s good because we’ll be

144 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

needing to neglect more columns as we shift rb further from ra. Neglecting these columns
is commonly justified by the experience that “after short range regressors have had their
effect, long range regressors generally find little remaining to predict.” (Recall that the
damped harmonic oscillator from physics, the finite difference equation that predicts the
future from the past, uses only two lags.)

Here is the main point: Since rb and ra both contain the same signal r but time-shifted,
the orthogonality at all shifts means that the autocorrelation of r vanishes at all lags. An
exception, of course, is at zero lag. The autocorrelation does not vanish there because ra is
not orthogonal to its first column (because we did not minimize with respect to a0).

As we redraw 0 ≈ rb = Ybb for various lags, we may shift the columns only downward
because shifting them upward would bring in the first column of Ya and the residual ra is
not orthogonal to that. Thus we have only proven that one side of the autocorrelation of
r vanishes. That is enough however, because autocorrelation functions are symmetric, so if
one side vanishes, the other must also.

If a and b were two-sided filters like (· · · , b−2, b−1, 1, b1, b2, · · ·) the proof would break.
If b were two-sided, Yb would catch the nonorthogonal column of Ya. Not only is ra not
proven to be perpendicular to the first column of Ya, but it cannot be orthogonal to it
because a signal cannot be orthogonal to itself.

The implications of this theorem are far reaching. The residual r, a convolution of y
with a has an autocorrelation that is an impulse function. The Fourier transform of an
impulse is a constant. Thus the spectrum of the residual is “white”. Thus y and a have
mutually inverse spectra.

Since the output of a PEF is white, the PEF itself has a spectrum inverse to its input.

An important application of the PEF is in missing data interpolation. We’ll see examples
later in this chapter. My third book, PVI2 has many examples3 in one dimension with both
synthetic data and field data including the gap parameter. Here we next extend these ideas
to two (or more) dimensions.

6.3.2 Simple dip filters

Convolution in two dimensions is just like convolution in one dimension except that convo-
lution is done on two axes. The input and output data are planes of numbers and the filter
is also a plane. A two-dimensional filter is a small plane of numbers that is convolved over
a big data plane of numbers.

Suppose the data set is a collection of seismograms uniformly sampled in space. In other
words, the data is numbers in a (t, x)-plane. For example, the following filter destroys any
wavefront aligned along the direction of a line containing both the “+1” and the “−1”.

−1 ·
· ·
· 1

(6.22)

2 http://sepwww.stanford.edu/sep/prof/pvi/toc html/index.html
3 http://sepwww.stanford.edu/sep/prof/pvi/tsa/paper html/node1.html

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 145

The next filter destroys a wave with a slope in the opposite direction:

· 1
−1 · (6.23)

To convolve the above two filters, we can reverse either on (on both axes) and correlate
them, so that you can get

· −1 ·
1 · ·
· · 1
· −1 ·

(6.24)

which destroys waves of both slopes.

A two-dimensional filter that can be a dip-rejection filter like (6.22) or (6.23) is

a ·
b ·
c 1
d ·
e ·

(6.25)

where the coefficients (a, b, c, d, e) are to be estimated by least squares in order to minimize
the power out of the filter. (In the filter table, the time axis runs vertically.)

Fitting the filter to two neighboring traces that are identical but for a time shift, we see
that the filter coefficients (a, b, c, d, e) should turn out to be something like (−1, 0, 0, 0, 0) or
(0, 0,−.5,−.5, 0), depending on the dip (stepout) of the data. But if the two channels are
not fully coherent, we expect to see something like (−.9, 0, 0, 0, 0) or (0, 0,−.4,−.4, 0). To
find filters such as (6.24), we adjust coefficients to minimize the power out of filter shapes,
as in

v a ·
w b ·
x c 1
y d ·
z e ·

(6.26)

With 1-dimensional filters, we think mainly of power spectra, and with 2-dimensional
filters we can think of temporal spectra and spatial spectra. What is new, however, is that
in two dimensions we can think of dip spectra (which is when a 2-dimensional spectrum has
a particularly common form, namely when energy organizes on radial lines in the (ω, kx)-
plane). As a short (three-term) 1-dimensional filter can devour a sinusoid, we have seen
that simple 2-dimensional filters can devour a small number of dips.

6.3.3 PEF whiteness proof in 2-D

A well-known property (see FGDP or PVI) of a 1-D PEF is that its energy clusters imme-
diately after the impulse at zero delay time. Applying this idea to the helix in Figure shows
us that we can consider a 2-D PEF to be a small halfplane like with an impulse along a
side. These shapes are what we see here in Figure 6.2.

146 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.2: A 2-D whitening filter
template, and itself lagged. At out-
put locations “A” and “B,” the filter
coefficient is constrained to be “1”.
When the semicircles are viewed as
having infinite radius, the B filter
is contained in the A filter. Be-
cause the output at A is orthogo-
nal to all its inputs, which include
all inputs of B, the output at A
is orthogonal to the output of B.
mda/whitepruf whitepruf

Figure 6.2 shows the input plane with a 2-D filter on top of it at two possible locations.
The filter shape is a semidisk, which you should imagine being of infinitely large radius.
Notice that semidisk A includes all the points in B. The output of disk A will be shown
to be orthogonal to the output of disk B. Conventional least squares theory says that the
coefficients of the filter are designed so that the output of the filter is orthogonal to each
of the inputs to that filter (except for the input under the “1,” because any nonzero signal
cannot be orthogonal to itself). Recall that if a given signal is orthogonal to each in a given
group of signals, then the given signal is orthogonal to all linear combinations within that
group. The output at B is a linear combination of members of its input group, which is
included in the input group of A, which are already orthogonal to A. Therefore the output
at B is orthogonal to the output at A. In summary,

residual ⊥ fitting function
output at A ⊥ each input to A
output at A ⊥ each input to B
output at A ⊥ linear combination of each input to B
output at A ⊥ output at B

The essential meaning is that a particular lag of the output autocorrelation function van-
ishes.

Study Figure 6.2 to see for what lags all the elements of the B filter are wholly contained
in the A filter. These are the lags where we have shown the output autocorrelation to be
vanishing. Notice another set of lags where we have proven nothing (where B is moved to
the right of A). Autocorrelations are centrosymmetric, which means that the value at any
lag is the same as the value at the negative of that lag, even in 2-D and 3-D where the
lag is a vector quantity. Above we have shown that a halfplane of autocorrelation values
vanishes. By the centrosymmetry, the other half must vanish too. Thus the autocorrelation
of the PEF output is an impulse function, so its 2-D spectrum is white.

The helix tells us why the proper filter form is not a square with the “1” on the corner.
Before I discovered the helix, I understood it another way (that I learned from John P.
Burg): For a spectrum to be white, all nonzero autocorrelation lags must be zero-valued.
If the filter were a quarter-plane, then the symmetry of autocorrelations would only give
us vanishing in another quarter, so there would be two remaining quarter-planes where the

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 147

autocorrelation was not zero.

Fundamentally, the white-output theorem requires a one-dimensional ordering to the
values in a plane or volume. The filter must contain a halfplane of values so that symmetry
gives the other half.

You will notice some nonuniqueness. We could embed the helix with a 90◦ rotation in the
original physical application. Besides the difference in side boundaries, the 2-D PEF would
have a different orientation. Both PEFs should have an output that tends to whiteness as
the filter is enlarged. It seems that we could design whitening autoregression filters for 45◦

rotations also, and we could also design them for hexagonal coordinate systems. In some
physical problems, you might find the nonuniqueness unsettling. Does it mean the “final
solution” is nonunique? Usually not, or not seriously so. Recall even in one dimension, the
time reverse of a PEF has the same spectrum as the original PEF. When a PEF is used
for regularizing a fitting problem, it is worth noticing that the quadratic form minimized is
the PEF times its adjoint so the phase drops out. Likewise, a missing data restoration also
amounts to minimizing a quadratic form so the phase again drops out.

6.3.4 Examples of modeling and deconvolving with a 2-D PEF

Here we examine elementary signal-processing applications of 2-D prediction-error filters
(PEFs) on both everyday 2-D textures and on seismic data. Some of these textures are
easily modeled with prediction-error filters (PEFs) while others are not. All figures used
the same 10× 10 filter shape. No attempt was made to optimize filter size or shape or any
other parameters.

Results in Figures 6.3-6.9 are shown with various familiar textures4 on the left as train-
ing data sets. From these training data sets, a prediction-error filter (PEF) is estimated
using module pef on page 160. The center frame is simulated data made by deconvolving
(polynomial division) random numbers by the estimated PEF. The right frame is the more
familiar process, convolving the estimated PEF on the training data set.

Figure 6.3: Synthetic granite matches the training image quite well. The predic-
tion error (PE) is large at grain boundaries so it almost seems to outline the grains.
mda/morgan granite

Theoretically, the right frame tends towards a white spectrum. Earlier you could notice
4 I thank Morgan Brown for finding these textures.

148 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

the filter size by knowing that the output was taken to be zero where the filter is only
partially on the data. This was annoying on real data where we didn’t want to throw away
any data around the sides. Now the filtering is done without a call to the boundary module
so we have typical helix wraparound.

Figure 6.4: Synthetic wood grain has too little white. This is because of the nonsymmetric
brightness histogram of natural wood. Again, the PEF output looks random as expected.
mda/morgan wood

Figure 6.5: A banker’s suit (left). A student’s suit (center). My suit (right). The prediction
error is large where the weave changes direction. mda/morgan herr

Since a PEF tends to the inverse of the spectrum of its input, results similar to these
could probably be found using Fourier transforms, smoothing spectra, etc. We used PEFs
because of their flexibility. The filters can be any shape. They can dodge around missing
data, or we can use them to estimate missing data. We avoid periodic boundary assumptions
inherent to FT. The PEF’s are designed only internal to known data, not off edges so they
are readily adaptible to nonstationarity. Thinking of these textures as seismic time slices,
the textures could easily be required to pass thru specific values at well locations.

6.3.5 Seismic field data examples

Figures 6.10-6.13 are based on exploration seismic data from the Gulf of Mexico deep water.
A ship carries an air gun and tows a streamer with some hundreds of geophones. First we
look at a single pop of the gun. We use all the geophone signals to create a single 1-D
PEF for the time axis. This changes the average temporal frequency spectrum as shown

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 149

Figure 6.6: Basket weave. The simulated data fails to segregate the two dips into a
checkerboard pattern. The PEF output looks structured perhaps because the filter is too
small. mda/morgan fabric

Figure 6.7: Brick. Synthetic brick edges are everywhere and do not enclose blocks contain-
ing a fixed color. PEF output highlights the mortar. mda/morgan brick

Figure 6.8: Ridges. A spectacular failure of the stationarity assumption. All dips are
present but in different locations. Never-the-less, the ridges have been sharpened by the
deconvolution. mda/morgan ridges

150 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.9: Gulf of Mexico seismic section, modeled, and deconvolved. Do you see any
drilling prospects in the simulated data? In the deconvolution, the strong horizontal layering
is suppressed giving a better view of the hyperbolas. The decon filter is the same 10 × 10
used on the everyday textures. mda/morgan WGstack

Figure 6.10: ω spectrum of a shot gather of Figure 6.11 before and after 1-D decon with a
30 point filter. mda/pefex specdecon

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 151

in Figure 6.10. Signals from 60 Hz to 120 Hz are boosted substantially. The raw data
has evidently been prepared with strong filtering against signals below about 8 Hz. The
PEF attempts to recover these signals, mostly unsuccessfully, but it does boost some energy
near the 8 Hz cutoff. Choosing a longer filter would flatten the spectrum further. The big
question is, “Has the PEF improved the appearance of the data?”

The data itself from the single pop, both before and after PE-filtering is shown in
Figure 6.11. For reasons of esthetics of human perception I have chosen to display a mirror
image of the PEF’ed data. To see a blink movie of superposition of before-and-after images
you need the electronic book. We notice that signals of high temporal frequencies indeed
have the expected hyperbolic behavior in space. Thus, these high-frequency signals are
wavefields, not mere random noise.

Given that all visual (or audio) displays have a bounded range of amplitudes, increasing
the frequency content (bandwidth) means that we will need to turn down the amplification
so we do not wish to increase the bandwidth unless we are adding signal.

Increasing the spectral bandwidth always requires us to diminish the gain.

The same ideas but with a two-dimensional PEF are in Figure 6.12 (the same data but
with more of it squeezed onto the page.) As usual, the raw data is dominated by events
arriving later at greater distances. After the PEF, we tend to see equal energy in dips in all
directions. We have strongly enhanced the “backscattered” energy, those events that arrive
later at shorter distances.

Figure 6.13 shows echos from the all shots, the nearest receiver on each shot. This picture
of the earth is called a “near-trace section.” This earth picture shows us why there is so
much backscattered energy in Figure 6.12 (which is located at the left side of Figure 6.13).
The backscatter comes from any of the many of near-vertical faults.

We have been thinking of the PEF as a tool for shaping the spectrum of a display. But
does it have a physical meaning? What might it be? Referring back to the beginning of
the chapter we are inclined to regard the PEF as the convolution of the source waveform
with some kind of water-bottom response. In Figure 6.12 we used many different shot-
receiver separations. Since each different separation has a different response (due to differing
moveouts) the water bottom reverberation might average out to be roughly an impulse.
Figure 6.12 is a different story. Here for each shot location, the distance to the receiver is
constant. Designing a single channel PEF we can expect the PEF to contain both the shot
waveform and the water bottom layers because both are nearly identical in all the shots. We
would rather have a PEF that represents only the shot waveform (and perhaps a radiation
pattern).

Let us consider how we might work to push the water-bottom reverberation out of the
PEF. This data is recorded in water 600 meters deep. A consequence is that the sea bottom
is made of fine-grained sediments that settled very slowly and rather similarly from place
to place. In shallow water the situation is different. The sands near estuaries are always
shifting. Sedimentary layers thicken and thin. They are said to “on-lap and off-lap.” Here
I do notice where the water bottom is sloped the layers do thin a little. To push the water
bottom layers out of the PEF our idea is to base its calculation not on the raw data, but on
the spatial prediction error of the raw data. On a perfectly layered earth a perfect spatial

152 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.11: Raw data with its mirror. Mirror had 1-D PEF applied, 30 point filter.
mda/pefex decon0

6.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 153

Figure 6.12: A 2-D filter (here 20 × 5) brings out the backscattered energy.
mda/pefex decon1

154 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.13: Raw data, near-trace section (top). Filtered with a two-channel PEF (bottom).
The movie has other shaped filters. mda/pefex zof

6.4. PEF ESTIMATION WITH MISSING DATA 155

prediction error filter would zero all traces but the first one. Since a 2-D PEF includes
spatial prediction as well as temporal prediction, we can expect it to contain much less of
the sea-floor layers than the 1-D PEF. If you have access to the electronic book, you can
blink the figure back and forth with various filter shapes.

6.4 PEF ESTIMATION WITH MISSING DATA

If we are not careful, our calculation of the PEF could have the pitfall that it would try to
use the missing data to find the PEF, and hence it would get the wrong PEF. To avoid this
pitfall, imagine a PEF finder that uses weighted least squares where the weighting function
vanishes on those fitting equations that involve missing data. The weighting would be unity
elsewhere. Instead of weighting bad results by zero, we simply will not compute them.
The residual there will be initialized to zero and never changed. Likewise for the adjoint,
these components of the residual will never contribute to a gradient. So now we need a
convolution program that produces no outputs where missing inputs would spoil it.

Recall there are two ways of writing convolution, equation (1.4) when we are interested
in finding the filter inputs, and equation (1.5) when we are interested in finding the filter
itself. We have already coded equation (1.4), operator helicon on page 8. That operator
was useful in missing data problems. Now we want to find a prediction-error filter so we
need the other case, equation (1.5), and we need to ignore the outputs that will be broken
because of missing inputs. The operator module hconest does the job.

user/gee/hconest.c

44 for (i a = 0 ; i a < na ; i a++) {
45 for (i y = aa−>l ag [i a] ; i y < ny ; i y++) {
46 i f (aa−>mis [i y]) continue ;
47

48 i x = iy − aa−>l ag [i a] ;
49

50 i f (adj) a [i a] −= y [iy] ∗ x [i x] ;
51 else y [i y] −= a [i a] ∗ x [i x] ;
52 }
53 }

We are seeking a prediction error filter (1, a1, a2) but some of the data is missing. The
data is denoted y or yi above and xi below. Because some of the xi are missing, some of
the regression equations in (6.27) are worthless. When we figure out which are broken, we
will put zero weights on those equations.

156 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

0 ≈ r = WXa =

w1
. w2
. . w3
. . . w4
. . . . w5 . . .
. w6 . .
. w7 .
. w8

x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

0 x6 x5

0 0 x6

 1
a1

a2

(6.27)

Suppose that x2 and x3 were missing or known bad. That would spoil the 2nd, 3rd, 4th,
and 5th fitting equations in (6.27). In principle, we want w2, w3, w4 and w5 to be zero. In
practice, we simply want those components of r to be zero.

What algorithm will enable us to identify the regression equations that have become
defective, now that x2 and x3 are missing? Take filter coefficients (a0, a1, a2, . . .) to be all
ones. Let dfree be a vector like x but containing 1’s for the missing (or “freely adjustable”)
data values and 0’s for the known data values. Recall our very first definition of filtering
showed we can put the filter in a vector and the data in a matrix or vice versa. Thus Xa
above gives the same result as Ax below.

m1

m2

m3

m4

m5

m6

m7

m8

=

0
1
2
2
1
0
0
0

=

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

0
1
1
0
0
0

 = Adfree (6.28)

The numeric value of each mi tells us how many of its inputs are missing. Where
none are missing, we want unit weights wi = 1. Where any are missing, we want zero
weights wi = 0. The desired residual under partially missing inputs is computed by module
misinput on the next page.

6.4.1 Internal boundaries to multidimensional convolution

Sometimes we deal with small patches of data. In order that boundary phenomena not
dominate the calculation intended in the central region, we need to take care that input
data is not assumed to be zero beyond the interval that the data is given.

The two little triangular patches of zeros in the convolution matrix in equation (6.27)
describe end conditions where it is assumed that the data yt vanishes before t = 1 and after
t = 6. Alternately we might not wish to make that assumption. Thus the triangles filled
with zeros could be regarded as missing data. In this one-dimensional example, it is easy to
see that the filter, say yy->mis should be set to true at the ends so no output would ever

6.4. PEF ESTIMATION WITH MISSING DATA 157

user/gee/misinput.c

23 void f ind mask (int n /∗ data s i z e ∗/ ,
24 const int ∗known /∗ mask f o r known data [n] ∗/ ,
25 s f f i l t e r aa /∗ h e l i c a l f i l t e r ∗/)
26 /∗< c r ea t e a f i l t e r mask >∗/
27 {
28 int i , ih ;
29 f loat ∗ rr , ∗ d f r e ;
30

31 r r = s f f l o a t a l l o c (n) ;
32 d f r e = s f f l o a t a l l o c (n) ;
33

34 for (i =0; i < n ; i++) {
35 d f r e [i] = known [i] ? 0 . : 1 . ;
36 }
37

38 s f h e l i c o n i n i t (aa) ;
39

40 for (ih =0; ih < aa−>nh ; ih++) {
41 aa−> f l t [ih] = 1 . ;
42 }
43

44 s f h e l i c o n l o p (f a l s e , f a l s e , n , n , d fre , r r) ;
45

46 for (ih =0; ih < aa−>nh ; ih++) {
47 aa−> f l t [ih] = 0 . ;
48 }
49

50 for (i =0; i < n ; i++) {
51 i f (r r [i] > 0 .) aa−>mis [i] = true ;
52 }
53

54 f r e e (r r) ;
55 f r e e (d f r e) ;
56 }

158 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

be computed there. We would like to find a general multidimensional algorithm to correctly
specify yy->mis around the multidimensional boundaries. This proceeds like the missing
data algorithm, i.e. we apply a filter of all ones to a data space template that is taken
all zeros except ones at the locations of missing data, in this case y0, y−1 and y7, y8. This
amounts to surrounding the original data set with some missing data. We need padding
the size of the filter on all sides. The padded region would be filled with ones (designating
missing inputs). Where the convolution output is nonzero, there yy->mis is set to true
denoting an output with missing inputs.

The two-dimensional case is a little more cluttered than the 1-D case but the principle
is about the same. Figure 4 shows a larger input domain, a 5×3 filter, and a smaller output
domain. There are two things to notice. First, sliding the filter everywhere inside the outer

Figure 6.14: Domain of inputs and
outputs of a two-dimensional filter
like a PEF. mda/XFig rabdomain

Input

Output

box, we get outputs (under the 1 location) only in the inner box. Second, (the adjoint
idea) crosscorrelating the inner and outer boxes gives us the 3× 5 patch of information we
use to build the filter coefficients. We need to be careful not to assume that signals vanish
outside the region where they are defined. In a later chapter we will break data spaces
into overlapping patches, separately analyze the patches, and put everything back together.
We do this because crosscorrelations change with time and they are handled as constant in
short time windows. There we must be particularly careful that zero signal values not be
presumed outside of the small volumes; otherwise the many edges and faces of the many
small volumes can overwhelm the interior that we want to study.

In practice, the input and output are allocated equal memory, but the output residual
is initialized to zero everywhere and then not computed except where shown in figure 4.
Below is module bound to build a selector for filter outputs that should never be examined
or even computed (because they need input data from outside the given data space). Inputs
are a filter aa and the size of its cube na = (na(1),na(2),...). Also input are two cube
dimensions, that of the data last used by the filter nold and that of the filter’s next intended
use nd. (nold and nd are often the same). Module bound begins by defining a bigger data
space with room for a filter surrounding the original data space nd on all sides. It does
this by the line nb=nd+2*na. Then we allocate two data spaces xx and yy of the bigger
size nb and pack many ones in a frame of width na around the outside of xx. The filter
aa is also filled with ones. The filter aa must be regridded for the bigger nb data space
(regridding merely changes the lag values of the ones). Now we filter the input xx with aa
getting yy. Wherever the output is nonzero, we have an output that has been affected by
the boundary. Such an output should not be computed. Thus we allocate the logical mask
aa->mis (a part of the helix filter definition in module helix on page 7) and wherever we
see a nonzero value of yy in the output, we designate the output as depending on missing
inputs by setting aa->mis to true.

6.4. PEF ESTIMATION WITH MISSING DATA 159

user/gee/bound.c

28 void bound (int dim /∗ number o f dimensions ∗/ ,
29 const int ∗nold /∗ o ld data coord ina t e s [dim] ∗/ ,
30 const int ∗nd /∗ new data coord ina t e s [dim] ∗/ ,
31 const int ∗na /∗ f i l t e r box s i z e [dim] ∗/ ,
32 const s f f i l t e r aa /∗ h e l i x f i l t e r ∗/)
33 /∗< Mark h e l i x f i l t e r ou tpu t s where input i s o f f data . >∗/
34 {
35 int iy , my, ib , mb, i , nb [SF MAX DIM] , i i [SF MAX DIM] ;
36 f loat ∗xx , ∗yy ;
37

38 my = mb = 1 ;
39 for (i =0; i < dim ; i++) {
40 nb [i] = nd [i] + 2∗na [i] ; /∗ nb i s a b i g g e r space . ∗/
41 mb ∗= nb [i] ;
42 my ∗= nd [i] ;
43 }
44

45 xx = s f f l o a t a l l o c (mb) ; yy = s f f l o a t a l l o c (mb) ;
46

47 for (ib =0; ib < mb; ib++) {
48 s f l i n e 2 c a r t (dim , nb , ib , i i) ;
49 xx [ib] = 0 . ;
50 for (i =0; i < dim ; i++)
51 i f (i i [i]+1 <= na [i] | | i i [i]+1 > nb [i]−na [i]) {
52 xx [ib] = 1 . ;
53 break ;
54 }
55 }
56 s f h e l i c o n i n i t (aa) ;
57 r e g r i d (dim , nold , nb , aa) ;
58 for (i =0; i < aa−>nh ; i++) aa−> f l t [i] = 1 . ;
59 /∗ app ly f i l t e r ∗/
60 s f h e l i c o n l o p (f a l s e , f a l s e , mb, mb, xx , yy) ;
61 r e g r i d (dim , nb , nd , aa) ;
62 for (i =0; i < aa−>nh ; i++) aa−> f l t [i] = 0 . ;
63

64 aa−>mis = s f b o o l a l l o c (my) ; /∗ a t t ach miss ing de s i gna t i on ∗/
65 for (i y = 0 ; iy < my; iy++) { /∗ map to padded space ∗/
66 s f l i n e 2 c a r t (dim , nd , iy , i i) ;
67 for (i =0; i < dim ; i++) i i [i] += na [i] ;
68 ib = s f c a r t 2 l i n e (dim , nb , i i) ;
69 aa−>mis [i y] = (bool) (yy [ib] > 0 .) ;
70 }
71

72 f r e e (xx) ; f r e e (yy) ;
73 }

160 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

In reality one would set up the boundary conditions with module bound before identify-
ing locations of missing data with module misinput. Both modules are based on the same
concept, but the boundaries are more cluttered and confusing which is why we examined
them later.

6.4.2 Finding the prediction-error filter

The first stage of the least-squares estimation is computing the prediction-error filter. The
second stage will be using it to find the missing data. The input data space contains a
mixture of known data values and missing unknown ones. For the first stage of finding the
filter, we generally have many more fitting equations than we need so we can proceed by
ignoring the fitting equations that involve missing data values. We ignore them everywhere
that the missing inputs hit the filter.

The codes here do not address the difficulty that maybe too much data is missing so
that all weights are zero. To add stabilization we could supplement the data volume with
a “training dataset” or by a “prior filter”. With things as they are, if there is not enough
data to specify a prediction-error filter, you should encounter the error exit from cgstep()
on page 51.

user/gee/pef.c

25 void f i n d p e f (int nd /∗ data s i z e ∗/ ,
26 f loat ∗ dd /∗ data [nd] ∗/ ,
27 s f f i l t e r aa /∗ es t imated f i l t e r ∗/ ,
28 int n i t e r /∗ number o f i t e r a t i o n s ∗/)
29 /∗< f i n d PEF >∗/
30 {
31 h c o n e s t i n i t (dd , aa) ;
32 s f s o l v e r (hcones t lop , s f c g s t ep , aa−>nh , nd , aa−>f l t , dd ,
33 n i t e r , ”x0” , aa−>f l t , ”end”) ;
34 s f c g s t e p c l o s e () ;
35 }

6.5 TWO-STAGE LINEAR LEAST SQUARES

In Chapter 3 and Chapter 5 we filled empty bins by minimizing the energy output from the
filtered mesh. In each case there was arbitrariness in the choice of the filter. Here we find
and use the optimum filter, the PEF.

The first stage is that of the previous section, finding the optimal PEF while carefully
avoiding using any regression equations that involve boundaries or missing data. For the
second stage, we take the PEF as known and find values for the empty bins so that the
power out of the prediction-error filter is minimized. To do this we find missing data with
module mis2() on page 133.

6.5. TWO-STAGE LINEAR LEAST SQUARES 161

This two-stage method avoids the nonlinear problem we would otherwise face if we
included the fitting equations containing both free data values and free filter values. Pre-
sumably, after two stages of linear least squares we are close enough to the final solution
that we could switch over to the full nonlinear setup described near the end of this chapter.

The synthetic data in Figure 6.15 is a superposition of two plane waves of different
directions, each with a random (but low-passed) waveform. After punching a hole in the
data, we find that the lost data is pleasingly restored, though a bit weak near the side
boundary. This imperfection could result from the side-boundary behavior of the operator
or from an insufficient number of missing-data iterations.

Figure 6.15: Original data (left), with a zeroed hole, restored, residual selector (right).
mda/hole hole

The residual selector in Figure 6.15 shows where the filter output has valid inputs. From
it you can deduce the size and shape of the filter, namely that it matches up with Figure 4.
The ellipsoidal hole in the residual selector is larger than that in the data because we lose
regression equations not only at the hole, but where any part of the filter overlaps the hole.

The results in Figure 6.15 are essentially perfect representing the fact that that synthetic
example fits the conceptual model perfectly. Before we look at the many examples in Figures
6.16-6.19 we will examine another gap-filling strategy.

6.5.1 Adding noise (Geostat)

In chapter 3 we restored missing data by adopting the philosopy of minimizing the energy
in filtered output. In this chapter we learned about an optimum filter for this task, the
prediction-error filter (PEF). Let us name this method the “minimum noise” method of
finding missing data.

A practical problem with the minimum-noise method is evident in a large empty hole
such as in Figures 6.16- 6.17. In such a void the interpolated data diminishes greatly. Thus
we have not totally succeeded in the goal of “hiding our data acquisition footprint” which

162 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

we would like to do if we are trying to make pictures of the earth and not pictures of our
data acquisition footprint.

What we will do next is useful in some applications but not in others. Misunderstood or
misused it is rightly controversial. We are going to fill the empty holes with something that
looks like the original data but really isn’t. I will distinguish the words “synthetic data”
(that derived from a physical model) from “simulated data” (that manufactured from a
statistical model). We will fill the empty holes with simulated data like what you see in the
center panels of Figures 6.3-6.9. We will add just enough of that “wall paper noise” to keep
the variance constant as we move into the void.

Given some data d, we use it in a filter operator D, and as described with equation
(6.27) we build a weighting function W that throws out the broken regression equations
(ones that involve missing inputs). Then we find a PEF a by using this regression.

0 ≈ r = WDa (6.29)

Because of the way we defined W, the “broken” components of r vanish. We need to know
the variance σ of the nonzero terms. It can be expressed mathematically in a couple different
ways. Let 1 be a vector filled with ones and let r2 be a vector containing the squares of the
components of r.

σ =

√√√√ 1
N

N∑
i

r2
i =

√
1′Wr2

1′W1
(6.30)

Let us go to a random number generator and get a noise vector n filled with random numbers
of variance σ. We’ll call this the “added random noise”. Now we solve this new regression
for the data space d (both known and missing)

0 ≈ r = Ad − n (6.31)

keeping in mind that known data is constrained (as detailed in chapter 3).

To understand why this works, consider first the training image, a region of known data.
Although we might think that the data defines the white noise residual by r = Ad, we can
also imagine that the white noise determines the data by d = A−1r. Then consider a region
of wholly missing data. This data is determined by d = A−1n. Since we want the data
variance to be the same in known and unknown locations, naturally we require the variance
of n to match that of r.

A very minor issue remains. Regression equations may have all of their required input
data, some of it, or none of it. Should the n vector add noise to every regression equation?
First, if a regression equation has all its input data that means there are no free variables
so it doesn’t matter if we add noise to that regression equation because the constraints will
overcome that noise. I don’t know if I should worry about how many inputs are missing for
each regression equation.

It is fun making all this interesting “wall paper” noticing where it is successful and
where it isn’t. We cannot help but notice that it seems to work better with the genuine
geophysical data than it does with many of the highly structured patterns. Geophysical
data is expensive to acquire. Regrettably, we have uncovered a technology that makes
counterfeiting much easier.

6.5. TWO-STAGE LINEAR LEAST SQUARES 163

Examples are in Figures 6.16-6.19. In the electronic book, the right-side panel of each
figure is a movie, each panel being derived from different random numbers.

Figure 6.16: The herringbone texture is a patchwork of two textures. We notice that data
missing from the hole tends to fill with the texture at the edge of the hole. The spine of
the herring fish, however, is not modeled at all. mda/morgan herr-hole-fillr

Figure 6.17: The brick texture has a mortar part (both vertical and horizontal joins) and
a brick surface part. These three parts enter the empty area but do not end where they
should. mda/morgan brick-hole-fillr

The seismic data in Figure 6.19 illustrates a fundamental principle: In the restored hole
we do not see the same spectrum as we do on the other panels. This is because the hole is
filled, not with all frequencies (or all slopes) but with those that are most predictable. The
filled hole is devoid of the unpredictable noise that is a part of all real data.

6.5.2 Inversions with geostat

In geophysical estimation (inversion) we use model styling (regularization) to handle the
portion of the model that is not determined by the data. This results in the addition of
minimal noise. Alternately, like in Geostatistics, we could make an assumption of statistical
stationarity and add much more noise so the signal variance in poorly determined regions
matches that in well determined regions. Here is how to do this. Given the usual data
fitting and model styling goals

0 ≈ Lm− d (6.32)
0 ≈ Am (6.33)

164 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Figure 6.18: The theoretical model is a poor fit to the ridge data since the pre-
diction must try to match ridges of all possible orientations. This data requires a
broader theory which incorporates the possibility of nonstationarity (space variable slope).
mda/morgan ridges-hole-fillr

Figure 6.19: Filling the missing seismic data. The imaging process known as “migration”
would suffer diffraction artifacts in the gapped data that it would not suffer on the restored
data. mda/morgan WGstack-hole-fillr

6.5. TWO-STAGE LINEAR LEAST SQUARES 165

We introduce a sample of random noise n and fit instead these regressions

0 ≈ Lm− d (6.34)
0 ≈ Am− n (6.35)

Of course you get a different solution for each different realization of the random noise. You
also need to be a little careful to use noise n of the appropriate variance. Figure 6.20 shows
a result on the SeaBeam data. Bob Clapp developed this idea at SEP and also applied it

Figure 6.20: Top left is binned data. Top right extends the data with a PEF. The bot-
tom two panels add appropriately colored random noise in the regions of missing data.
mda/geostat bobsea

to interval velocity estimation, the example of Figures 5.1-5.3.

166 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

6.5.3 Infill of 3-D seismic data from a quarry blast

Finding missing data (filling empty bins) requires use of a filter. Because of the helix, the
codes work in spaces of all dimensions.

An open question is how many conjugate-direction iterations are needed in missing-data
programs. When estimating filters, I set the iteration count niter at the number of free
filter parameters. Theoretically, this gives me the exact solution but sometimes I run double
the number of iterations to be sure. The missing-data estimation, however is a completely
different story. The number of free parameters in the missing-data estimation, could be
very large. This often implies impractically long compute times for the exact solution. In
practice I experiment carefully with niter and hope for the best. I find that where gaps
are small, they fill in quickly. Where the gaps are large, they don’t, and more iterations are
required. Where the gaps are large is where we must experiment with preconditioning.

Figure 6.21 shows an example of replacing missing data by values predicted from a 3-D
PEF. The data was recorded at Stanford University with a 13 × 13 array of independent
recorders. The figure shows 12 of the 13 lines each of length 13. Our main goal was to mea-
sure the ambient night-time noise. By morning about half the recorders had dead batteries
but the other half recorded a wave from a quarry blast. The raw data was distracting to
look at because of the many missing traces so I interpolated it with a small 3-D filter. That
filter was a PEF.

Figure 6.21: The left 12 panels are the inputs. The right 12 panels are outputs.
mda/miss3 passfill

6.5.4 Imposing prior knowledge of symmetry

Reversing a signal in time does not change its autocorrelation. In the analysis of stationary
time series, it is well known (FGDP) that the filter for predicting forward in time should

6.5. TWO-STAGE LINEAR LEAST SQUARES 167

be the same as that for “predicting” backward in time (except for time reversal). When
the data samples are short, however, a different filter may be found for predicting forward
than for backward. Rather than average the two filters directly, the better procedure is to
find the filter that minimizes the sum of power in two residuals. One is a filtering of the
original signal, and the other is a filtering of a time-reversed signal, as in equation (6.36),
where the top half of the equations represent prediction-error predicting forward in time
and the second half is prediction backward.

r1

r2

r3

r4

r5

r6

r7

r8

=

y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4

y1 y2 y3

y2 y3 y4

y3 y4 y5

y4 y5 y6

 1
a1

a2

 (6.36)

To get the bottom rows from the top rows, we simply reverse the order of all the components
within each row. That reverses the input time function. (Reversing the order within a
column would reverse the output time function.) Instead of the matrix being diagonals
tipping 45◦ to the right, they tip to the left. We could make this matrix from our old
familiar convolution matrix and a time-reversal matrix

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

It is interesting to notice how time-reversal symmetry applies to Figure 6.15. First of

all, with time going both forward and backward the residual space gets twice as big. The
time-reversal part gives a selector for Figure 6.15 with a gap along the right edge instead
of the left edge. Thus, we have acquired a few new regression equations.

Some of my research codes include these symmetries, but I excluded them here. Nowhere
did I see that the reversal symmetry made noticable difference in results, but in coding, it
makes a noticeable clutter by expanding the residual to a two-component residual array.

Where a data sample grows exponentially towards the boundary, I expect that extrap-
olated data would diverge too. You can force it to go to zero (or any specified value) at
some distance from the body of the known data. To do so, surround the body of data by
missing data and surround that by specification of “enough” zeros. “Enough” is defined by
the filter length.

6.5.5 Hexagonal coordinates

In a two-dimensional plane it seems that the one-sidedness of the PEF could point in
any direction. Since we usually have a rectangular mesh, however, we can only do the
calculations along the axes so we have only two possibilities, the helix can wrap around the
1-axis, or it can wrap around the 2-axis.

168 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Suppose you acquire data on a hexagonal mesh as below

.
.
.
.
.
.
.
.
.
.
.
.

and some of the data values are missing. How can we apply the methods of this chapter?
The solution is to append the given data by more missing data shown by the commas below.

. , , , , , ,
. , , , , , ,
, , , , , ,
,_._._._._._. . . . , , , , ,
, , . ._._._._/_/ / , , , ,
, , . / / , , , ,
, , , / / , , ,
, , , /_._._._._._._._._._/ , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,

Now we have a familiar two-dimensional coordinate system in which we can find missing
values, as well as perform signal and noise separations as described in a later chapter.

6.6 BOTH MISSING DATA AND UNKNOWN FILTER

Recall the missing-data figures beginning with Figure 3.3. There the filters were taken as
known, and the only unknowns were the missing data. Now, instead of having a predeter-
mined filter, we will solve for the filter along with the missing data. The principle we will
use is that the output power is minimized while the filter is constrained to have one nonzero
coefficient (else all the coefficients would go to zero). We will look first at some results and
then see how they were found.

In Figure 6.22 the filter is constrained to be of the form (1, a1, a2). The result is pleasing
in that the interpolated traces have the same general character as the given values. The
filter came out slightly different from the (1, 0,−1) that I guessed and tried in Figure ??.

6.6. BOTH MISSING DATA AND UNKNOWN FILTER 169

Figure 6.22: Top is known data.
Middle includes the interpolated val-
ues. Bottom is the filter with
the leftmost point constrained to
be unity and other points cho-
sen to minimize output power.
mda/misif man1

Curiously, constraining the filter to be of the form (a−2, a−1, 1) in Figure 6.23 yields the
same interpolated missing data as in Figure 6.22. I understand that the sum squared of
the coefficients of A(Z)P (Z) is the same as that of A(1/Z)P (Z), but I do not see why that
would imply the same interpolated data; never the less, it seems to.

Figure 6.23: The filter here had
its rightmost point constrained to
be unity—i.e., this filtering amounts
to backward prediction. The in-
terpolated data seems to be iden-
tical to that of forward prediction.
mda/misif man3

6.6.1 Objections to interpolation error

In any data interpolation or extrapolation, we want the extended data to behave like the
original data. And, in regions where there is no observed data, the extrapolated data should
drop away in a fashion consistent with its spectrum determined from the known region.

My basic idea is that the spectrum of the missing data should match that of the known
data. This is is the idea that the spectrum should be unchanging from a known region
to an unknown region. A technical word to express the idea of spectra not changing is
“stationary.” This happens with the PEF (one-sided filter) because its spectrum tends to
the inverse of that of the known data while that of the unknown data tends to the inverse
of that of the PEF. Thus the spectrum of the missing data is the “inverse of the inverse” of
the spectrum of the known. The PEF enables us to fill in the missing area with the spectral
shape of the known area. (In regions far away or unpredictable, the spectral shape may be
the same, but the energy drops to zero.)

On the other hand, the interpolation-error filter, a filter like (a−2, a−1, 1, a1, a2), should
fail to do the job because it has the wrong spectrum. (I am stating this fact without proof).

To confirm and show these concepts, I prepared synthetic data consisting of a fragment
of a damped exponential, and off to one side of it an impulse function. Most of the energy
is in the damped exponential. Figure 6.24 shows that the spectrum and the extended data

170 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

are about what we would expect. From the extrapolated data, it is impossible to see where
the given data ends.

Figure 6.24: Top is synthetic data
with missing portions. Middle in-
cludes the interpolated values. Bot-
tom is the filter, a prediction-error
filter which may look symmetric but
is not quite. mda/misif syn1

For comparison, I prepared Figure 6.25. It is the same as Figure 6.24, except that
the filter is constrained in the middle. Notice that the extended data does not have the
spectrum of the given data—the wavelength is much shorter. The boundary between real
data and extended data is not nearly as well hidden as in Figure 6.24.

Figure 6.25: Top is the same syn-
thetic data. Middle includes the in-
terpolated values. Bottom is the
filter, an interpolation-error filter.
mda/misif syn3

6.6.2 Packing both missing data and filter into a vector

Now let us examine the theory and coding behind the above examples. Define a roughening
filter A(ω) and a data signal Y (ω) at some stage of interpolation. The fitting goal is
0 ≈ A(ω)Y (ω) where the filter A(ω) has at least one time-domain coefficient constrained to
be nonzero and the data contains both known and missing values. Think of perturbations
∆A and ∆Y . We neglect the nonlinear term ∆A ∆Y as follows:

0 ≈ (A + ∆A)(Y + ∆Y) (6.37)
0 ≈ A ∆Y + Y ∆A + AY + ∆A ∆Y (6.38)
0 ≈ A ∆Y + Y ∆A + AY (6.39)

Let us use matrix algebraic notation to rewrite the fitting goals (6.39). For this we need
mask matrices (diagonal matrices with ones on the diagonal where variables are free and
zeros where they are constrained i.e., where ∆ai = 0 and ∆yi = 0). The free-mask matrix
for missing data is denoted J and that for the PE filter is K. The fitting goal (6.39) becomes

0 ≈ AJ∆y + YK∆a + (Ay or Ya) (6.40)

6.6. BOTH MISSING DATA AND UNKNOWN FILTER 171

Defining the original residual as r̄ = Ay this becomes

0 ≈
[

AJ YK
] [

∆y
∆a

]
+ r̄ (6.41)

For a 3-term filter and a 7-point data signal, the fitting goal (6.40) becomes

a0 y0 . .
a1 a0 y1 y0 .
a2 a1 a0 y2 y1 y0

. a2 a1 a0 . . . y3 y2 y1

. . a2 a1 a0 . . y4 y3 y2

. . . a2 a1 a0 . y5 y4 y3

. . . . a2 a1 a0 y6 y5 y4

. a2 a1 . y6 y5

. a2 . . y6

[
J 0
0 K

]

∆y0

∆y1

∆y2

∆y3

∆y4

∆y5

∆y6

∆a0

∆a1

∆a2

+

r̄0

r̄1

r̄2

r̄3

r̄4

r̄5

r̄6

r̄7

r̄8

≈ 0

(6.42)
Recall that r̄t is the convolution of at with yt, namely, r̄0 = y0a0 and r̄1 = y0a1 + y1a0, etc.
To optimize this fitting goal we first initialize a = (1, 0, 0, · · ·) and then put zeros in for
missing data in y. Then we iterate over equations (6.43) to (6.47).

r ←− Ay (6.43)[
∆y
∆a

]
←−

[
J′A′

K′Y′

]
r (6.44)

∆r ←−
[

AJ YK
] [

∆y
∆a

]
(6.45)

y ←− cgstep(y,∆y) (6.46)
a ←− cgstep(a,∆a) (6.47)

This is the same idea as all the linear fitting goals we have been solving, except that now
we recompute the residual r inside the iteration loop so that as convergence is achieved (if
it is achieved), the neglected nonlinear term ∆A∆Y tends to zero.

My initial research proceeded by linearization like (6.39). Although I ultimately suc-
ceeded, I had enough difficulties that I came to realize that linearization is dangerous. When
you start “far enough” from the correct solution the term ∆A ∆Y might not actually be
small enough. You don’t know how small is small, because these are not scalars but oper-
ators. Then the solution may not converge to the minimum you want. Your solution will
depend on where you start from. I no longer exhibit the nonlinear solver missif until I find
a real data example where it produces noticibly better results than multistage linear-least
squares.

172 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

The alternative to linearization is two-stage linear least squares. In the first stage you
estimate the PEF; in the second you estimate the missing data. If need be, you can re-
estimate the PEF using all the data both known and missing (downweighted if you prefer).

If you don’t have enough regression equations because your data is irregularly dis-
tributed, then you can use binning. Still not enough? Try coarser bins. The point is that
nonlinear solvers will not work unless you begin close enough to the solution, and the way to
get close is by arranging first to solve a sensible (though approximate) linearized problem.
Only as a last resort, after you have gotten as near as you can, should you use the nonlinear
least-squares techniques.

6.7 LEVELED INVERSE INTERPOLATION

Eighteenth- and nineteenth- century mathematics literature gives us many methods of in-
terpolating functions. These classical methods are generally based on polynomials. The
user specifies some order of polynomial and the theory works out the coefficients. Today
our interest is in both interpolating and extrapolating wavefields (which are solutions to
low order differential equations) and we use methods that are much better behaved than
polynomials when extrapolating data, methods which behave acceptably when faced with
contradictory data values, and methods which also apply in two and three dimensions.

In Chapter 3, subroutine invint1() on page ?? solved the problem of inverse linear
interpolation, which is, given scattered data points, to find a function on a uniform mesh
from which linear interpolation gives the scattered data points. To cope with regions hav-
ing no data points, the subroutine requires an input roughening filter. This is a bit like
specifying a differential equation to be satisfied between the data points. The question is,
how should we choose a roughening filter? The importance of the roughening filter grows
as the data gets sparser or as the mesh is refined.

Figures 6.22-6.25 suggest that the choice of the roughening filter need not be subjec-
tive, nor a priori, but that the prediction-error filter (PEF) is the ideal roughening filter.
Spectrally, the PEF tends to the inverse of its input hence its output tends to be “level”.
Missing data that is interpolated with this “leveler” tends to have the spectrum of given
data.

6.7.1 Test results for leveled inverse interpolation

Figures 6.26 and 6.27 show the same example as in Figures 3.13 and 3.14. What is new here
is that the proper PEF is not given but is determined from the data. Figure 6.26 was made
with a three-coefficient filter (1, a1, a2) and Figure 6.27 was made with a five-coefficient
filter (1, a1, a2, a3, a4). The main difference in the figures is where the data is sparse. The
data points in Figures ??, 6.26 and 6.27 are samples from a sinusoid.

Comparing Figures 3.13 and 3.14 to Figures 6.26 and 6.27 we conclude that by find-
ing and imposing the prediction-error filter while finding the model space, we have
interpolated beyond aliasing in data space.

6.7. LEVELED INVERSE INTERPOLATION 173

Figure 6.26: Interpolating with
a three-term filter. The interpo-
lated signal is fairly monofrequency.
mda/levint subsine3

Figure 6.27: Interpolat-
ing with a five term filter.
mda/levint subsine5

6.7.2 Analysis for leveled inverse interpolation

Here we see how the interpolation beyond aliasing was done. The first “statement of
wishes” is that the observational data d should result from a linear interpolation L of the
uniformly sampled model space m; that is, 0 ≈ Lm− d. Expressing this as a change ∆m
gives the fitting goal in terms of the model change, 0 ≈ L∆m+(Lm−d) = L∆m+r. The
second wish is really an assertion that a good way to find missing parts of a function (the
model space) is to solve for the function and its PEF at the same time. We are merging
the fitting goal (3.15) for irregularly sampled data with the fitting goal (6.42) for finding
the prediction-error filter.

0 ≈ rd = L∆m + (Lm− d) (6.48)
0 ≈ rm = A∆m + MK∆a + (Am or Ma) (6.49)

Writing this out in full for 3 data points and 6 model values on a uniform mesh and a PEF
of 3 terms, we have

.8 .2
. . 1 . . .
.5 .5

a0 m0 . .
a1 a0 m1 m0 .
a2 a1 a0 . . . m2 m1 m0

. a2 a1 a0 . . m3 m2 m1

. . a2 a1 a0 . m4 m3 m2

. . . a2 a1 a0 m5 m4 m3

. . . . a2 a1 . m5 m4

. a2 . . m5

[
I 0
0 K

]

∆m0

∆m1

∆m2

∆m3

∆m4

∆m5

∆m6

∆a0

∆a1

∆a2

+

rd0

rd1

rd2

rm0

rm1

rm2

rm3

rm4

rm5

rm6

rm7

≈ 0

(6.50)

174 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

where rm is the convolution of the filter at and the model mt, where rd is the data misfit
r = Lm− d, and where K was defined in equation (6.11).

Before you begin to use this nonlinear fitting goal, you need some starting guesses for
m and a. The guess m = 0 is satisfactory (as explained later). For the first guess of the
filter, I suggest you load it up with a = (1,−2, 1) as I did for the examples here.

6.7.3 Seabeam: theory to practice

I provide here a more fundamental theory for dealing with the Seabeam data. I originally
approached the data in this more fundamental way, but with time, I realized that I paid
a high price in code complexity, computational speed, and reliability. The basic problem
is that the elegant theory requires a good starting model which can only come from the
linearized theory. I briefly recount the experience here, because the fundamental theory is
interesting and because in other applications, you will face the challenge of sorting out the
fundamental features from the essential features.

The linear-interpolation operator carries us from a uniform mesh to irregularly dis-
tributed data. Fundamentally we seek to solve the inverse problem to go the other direc-
tion. A nonlinear approach to filling in the missing data is suggested by the one-dimensional
examples in Figures 6.26–6.27, where the PEF and the missing data are estimated simulta-
neously. The nonlinear approach has the advantage that it allows for completely arbitrary
data positioning, whereas the two-stage linear approach forces the data to be on a uniform
mesh and requires there not be too many empty mesh locations.

For the 2-D nonlinear problem, we follow the same approach we used in one dimension,
equations (6.48) and (6.49), except that the filtering and the linear interpolations are two
dimensional.

I have had considerable experience with this problem on this data set and I can report
that bin filling is easier and works much more quickly and reliably. Eventually I realized
that the best way to start the nonlinear iteration (6.48-6.49) is with the final result of bin
filling. Then I learned that the extra complexity of the nonlinear iteration (6.48-6.49) offers
little apparent improvement to the quality of the SeaBeam result. (This is not to say that
we should not try more variations on the idea).

Not only did I find the binning method faster, but I found it to be much faster (compare
a minute to an hour). The reasons for being faster (most important first) are,

1. Binning reduces the amount of data handled in each iteration by a factor of the average
number of points per bin.

2. The 2-D linear interpolation operator adds many operations per data point.

3. Using two fitting goals seems to require more iterations.

(Parenthetically, I later found that helix preconditioning speeds the Seabeam interpolation
from minutes to seconds.)

The most serious criticism of the nonlinear approach is that it does not free us from
the linearized approaches. We need them to get a “close enough” starting solution to the

6.8. MULTIVARIATE SPECTRUM 175

nonlinear problem. I learned that the iteration (6.48-6.49), like most nonlinear sequences,
behaves unexpectedly and badly when you start too far from the desired solution. For
example, I often began from the assumed PEF being a Laplacian and the original map
being fit from that. Oddly, from this starting location I sometimes found myself stuck. The
iteration (6.48-6.49) would not move towards the map we humans consider a better one.

Having said all those bad things about iteration (6.48-6.49), I must hasten to add that
with a different type of data set, you might find the results of (6.48-6.49) to be significantly
better.

6.7.4 Risky ways to do nonlinear optimization

I have noticed that some geophysicists have adopted a risky method of nonlinear optimiza-
tion, which is not advocated in the professional optimization literature. This risky method
is to linearize a goal (with a multiparameter model space), then optimize the linearized
goal, then relinearize, etc. The safer method is to relinearize after each step of CD.

An instructive example I learned about many years ago was earthquake epicenter lo-
cation. Model space is latitude, longitude, and origin time. When people added a new
variable, the depth, the solutions went wild until they learned to restrict the depth to zero
until the other three parameters were stabilized. Apparently the instability stems from the
fact that depth and origin time affect distant receivers in a similar way.

6.7.5 The bane of PEF estimation

This is the place where I would like to pat myself on the back for having “solved” the
problem of missing data. Actually, an important practical problem remains. I’ve been
trying to coax younger, more energetic people to think about it. The problem arises when
there is too much missing data.

The bane of PEF estimation is too much missing data

Then all the regression equations disappear. The nonlinear methods are particularly bad
because if they don’t have a good enough starting location, they can and do go crazy. My
only suggestion is to begin with a linear PEF estimator. Shrink the PEF and coarsen the
mesh in model space until you do have enough equations. Starting from there, hopefully
you can refine this crude solution without dropping into a local minimum.

Another important practical problem remains, that of nonstationarity. We’ll see the
beginnings of the solution to that problem in chapter .

6.8 MULTIVARIATE SPECTRUM

A common spectrum is the Fourier spectrum. More fundamentally, a spectrum is a decom-
position of a model space or data space into components. The components are in some
sense independent; more specifically, the components are orthogonal to one another. An-

176 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

other well-known spectrum is provided by eigenvectors and eigenvalues. In statistical signal
processing we handle a third type of spectrum, the multivariate spectrum.

Working in an optimization problem, we begin from residuals between theory and prac-
tice. These residuals can be scaled to make new optimization residuals before we start
minimizing their energy. What scaling should we use? The scaling can be a simple weight-
ing function or a filter. A filter is simply a weighting function in Fourier space.

The basic idea of common sense, which also comes to us as results proven by Gauss or
from the theory of statistical signal processing, is this: The optimization residuals should
be roughly of equal scale. This makes sense because squaring magnifies scale, and anything
small will be ignored while anything large will dominate. Scaling optimization residuals
to be in a common range makes them all equally influential on the final solution. Not
only should optimization residuals be of like scale in physical space, they should be of
like scale in Fourier space or eigenvector space, or any other space that we might use to
represent the optimization residuals. This implies that the optimization residuals should
be uncorrelated. If the optimization residuals were correlated, they would have a spectrum
that was not white. Not white means of differing sizes in Fourier space. Residuals should
be the same size as one another in physical space, likewise in Fourier space. Thus the
optimization residuals should be orthogonal and of unit scale, much like Fourier components
or as eigenvectors are orthonormal.

Let us approach the problem backwards. Suppose we have two random variables that
we take to be the ideal optimization residuals x1 and x2. In reality the two may be few or
trillions. In the language of statistics, the optimization residuals are expected to have zero
mean, an idea that is formalized by writing E(x1) = 0 and E(x2) = 0. Likewise these ideal
optimization residuals have equal energy, E(x2

1) = 1 and E(x2
2) = 1. Finally, these two

optimization residuals are uncorrelated, a condition which is written as E(x1x2) = 0. The
expectation symbol E() is like a summation over many instances of the random variable.

Now suppose there exists a transformation B from these ideal optimization residuals to
two experimental residuals y1 and y2, say y = Bx where

[
y1

y2

]
=

[
b11 b12

b21 b22

] [
x1

x2

]
(6.51)

The experimental residuals y1 and y2 are likely to be neither orthogonal nor equal in energy.
From the column vector y, the experimenter can form a square matrix. Let us also allow
the experimenter to write the symbol E() to denote summation over many trials or over
many sections of data, ranges over time or space, over soundings or over receiver locations.
The experimenter writes

R = E(yy′) (6.52)
R = E(Bxx′B′) (6.53)

Given a random variable r, the expectation of 2r is simply E(2r) = 2E(r). The E() symbol
is a summation on random variables, but constants like the coefficients of B pass right

6.8. MULTIVARIATE SPECTRUM 177

through it. Thus,

R = B E(xx′) B′ (6.54)

R = B E

([
x1

x2

] [
x1 x2

])
B′ (6.55)

R = B
[

E(x1x1) E(x1x2)
E(x2x1) E(x2x2)

]
B′ (6.56)

R = BB′ (6.57)

Given a matrix R, there is a simple well-known method called the Cholesky factorization
method that will factor R into two parts like B and B′. The method creates for us either an
upper or a lower triangular matrix (our choice) for B. You can easily reinvent the Cholesky
method if you multiply the symbols for two triangular matrices like B and B′ and notice the
procedure that works backwards from R to B. The experimenter seeks not B, however, but
its inverse, the matrix that takes us from the experimental residuals to the ideal optimization
residuals that are uncorrelated and of equal energies. The Cholesky factorization costs N3

computations, which is about the same as the cost of the matrix inversion of R or B.
For geophysical maps and other functions on Cartesian spaces, the Prediction Error Filter
(PEF) accomplishes the same general goal and has the advantage that we have already
learned how to perform the operation using operators instead of matrices.

The multivariate spectrum of experimental residuals y is the matrix R = E(yy′).
For optimum model finding, the experimental residuals (squared) should be weighted
inversely (matrix inverse) by their multivariate spectrum.

If I were a little stronger at analysis (or rhetoric) I would tell you that the optimizers pre-
conditioned variable p is the statisticians IID (Independent Identically Distributed) random
variable. For stationary (statistically constant) signals and images, Am is the model-space
PEF. Echo soundings and interval velocity have statistical properties that change with
depth. There Am is a diagonal weighting matrix (perhaps before or after a PEF).

6.8.1 What should we optimize?

Least-squares problems often present themselves as fitting goals such as

0 ≈ Fm− d (6.58)
0 ≈ m (6.59)

To balance our possibly contradictory goals we need weighting functions. The quadratic
form that we should minimize is

min
m

(Fm− d)′A′
nAn(Fm− d) + m′A′

mAmm (6.60)

where A′
nAn is the inverse multivariate spectrum of the noise (data-space residuals) and

A′
mAm is the inverse multivariate spectrum of the model. In other words, An is a leveler

on the data fitting error and Am is a leveler on the model. There is a curious unresolved
issue: What is the most suitable constant scaling ratio of An to Am?

178 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

6.8.2 Confusing terminology for data covariance

Confusion often stems from the mean of the data E(d).

An experimentalist would naturally believe that the expectation of the data is solely a
function of the data, that it can be estimated by averaging data.

On the other hand, a theoretician’s idea of the expectation of the observational data
E(d) is that it is the theoretical data Fm, that the expectation of the data E(d) = Fm
is a function of the model. The theoretician thinks this way because of the idea of noise
n = Fm− d as having zero mean.

Seismological data is highly complex but also highly reproducible. In studies like seis-
mology, the world is deterministic but more complicated than our ability to model. Thus, as
a practical matter, the discrepancy between observational data and theoretical data is more
realistically attributed to the theoretical data. It is not adequately modeled and computed.

This superficial difference in viewpoint becomes submerged to a more subtle level by
statistical textbooks that usually define weighting functions in terms of variances instead
of spectra. This is particularly confusing with the noise spectrum (A′

nAn)−1. It is often
referred to as the “data covariance” defined as E[(d−E(d))(d−E(d))′]. Clearly, the noise
spectrum is the same as the data covariance only if we accept the theoretician’s definition
that E(d) = Fm.

There is no ambiguity and no argument if we drop the word “variance” and use the
word “spectrum”. Thus, (1) the “inverse noise spectrum” is the appropriate weighting for
data-space residuals; and (2) the “inverse model spectrum” is the appropriate model-space
weighting. Theoretical expositions generally require these spectra to be given as “prior
information.” In this book we see how, when the model space is a map, we can solve for
the “prior information” along with everything else.

The statistical words “covariance matrix” are suggestive and appealing, but I propose
not to use them because of the ambiguity of E(d). For example, we understand that
people who say “data covariance” intend the “multivariate noise spectrum” but we cannot
understand their meaning of “model covariance”. They should intend the “multivariate
model spectrum” but that implies that E(m) = 0, which seems wrong. Avoiding the word
“covariance” avoids the problem.

6.8.3 Hermeneutics

Hermeneutics is the study of the methodological principles of interpretation. Historically, it
refers to bible study. Never-the-less, it seems entirely appropriate for Geophysical Estima-
tion. If Albert’s book is “Inverse Problem Theory” and mine is “Inverse Problem Practice”,
and if the difference between theory and practice is smaller in theory than it is in practice,
then there are two fundamental questions:

1. In theory, what is the difference between theory and practice? In theory, the difference
is data error.

2. In practice, what is the difference between theory and practice? One suggestion is
that the discrepancy is entirely due to inadequate modeling. It is well known that

6.8. MULTIVARIATE SPECTRUM 179

geophysical data is highly repeatable. The problem is that the modeling neglects far
too much.

Here is a perspective drawn from analysis of the human genome: ”The problem is that
it is possible to use empirical data to calibrate a model that generates simulated data that
is similar to the empirical data. The point of using such a calibrated model is to be able
to show how strange certain regions are if they don’t fit the simulated distribution, which
is based on the empirical distribution.” In other words, ”inversion” is just the process of
calibrating a model. To learn something new we study the failures of such models.

180 CHAPTER 6. MULTIDIMENSIONAL AUTOREGRESSION

Chapter 7

Spatial aliasing and scale
invariance

Landforms are not especially predictable. Therefore, crude PEF approximations are often
satisfactory. Wavefields are another matter. Consider the “shape” of the acoustic wavefronts
at this moment in the room you are in. The acoustic wavefield has statistical order in many
senses. If the 3-D volume is filled with waves emitted from a few point sources, then (with
some simplifications) what could be a volume of information is actually a few 1-D signals.
When we work with wavefronts we can hope for more dramatic, even astounding, results
from estimating properly.

The plane-wave model links an axis that is not aliased (time) with axes (space) that
often are.

We often characterize data from any region of (t, x)-space as “good” or “noisy” when we
really mean it contains “few” or “many” plane-wave events in that region. Where regions are
noisy, there is no escaping the simple form of the Nyquist limitation. Where regions are good
we may escape it. Real data typically contains both kinds of regions. Undersampled data
with a broad distribution of plane waves is nearly hopeless. Undersampled data with a sparse
distribution of plane waves offer us the opportunity to resample without aliasing. Consider
data containing a spherical wave. The angular bandwidth in a plane-wave decomposition
appears huge until we restrict attention to a small region of the data. (Actually a spherical
wave contains very little information compared to an arbitrary wave field.) It can be very
helpful in reducing the local angular bandwidth if we can deal effectively with tiny pieces
of data. If we can deal with tiny pieces of data, then we can adapt to rapid spatial and
temporal variations. This chapter shows such tiny windows of data.

7.1 INTERPOLATION BEYOND ALIASING

A traditional method of data interpolation on a regular mesh is a four-step procedure: (1)
Set zero values at the points to be interpolated; (2) Fourier transform; (3) Set to zero the
high frequencies; and (4) Inverse transform. This is a fine method and is suitable for many
applications in both one dimension and higher dimensions. However, this method fails to

181

182 CHAPTER 7. SPATIAL ALIASING AND SCALE INVARIANCE

take advantage of our prior knowledge that seismic data has abundant fragments of plane
waves that link an axis that is not aliased (time) to axes that often are (space).

7.1.1 Interlacing a filter

The filter below can be designed despite alternate missing traces. This filter destroys plane
waves. If the plane wave should happen to pass halfway between the “d” and the “e”,
those two points could interpolate the halfway point, at least for well-sampled temporal
frequencies, and the time axis should always be well sampled. For example, d = e = −.5
would almost destroy the plane wave and it is an aliased planewave for its higher frequencies.

a · b · c · d · e
· · · · · · · · ·
· · · · 1 · · · ·

(7.1)

We could use module pef on page 160 to find the filter (1), if we set up the lag table lag
appropriately. Then we could throw away alternate zeroed rows and columns (rescale the
lag) to get the filter

a b c d e
· · 1 · · (7.2)

which could be used with subroutine mis1() on page 70, to find the interleaved data because
both the filters (1) and (2) have the same dip characteristics.

Figure 1 shows three plane waves recorded on five channels and the interpolated data.
Both the original data and the interpolated data can be described as “beyond aliasing,”

Figure 7.1: Left is five signals, each showing three arrivals. With the data shown on the
left (and no more), the signals have been interpolated. Three new traces appear between
each given trace, as shown on the right. lal/lace lace3

because on the input data the signal shifts exceed the signal duration. The calculation
requires only a few seconds of a two-stage least-squares method, in which the first stage
estimates a PEF (inverse spectrum) of the known data, and the second uses the PEF
to estimate the missing traces. Figure 1 comes from PVI which introduces the clever
method described above. We will review how that was done and examine the F90 codes

7.2. MULTISCALE, SELF-SIMILAR FITTING 183

that generalize it to N -dimensions. Then we’ll go on to more general methods that allow
missing data in any location. Before the methods of this section are applied to field data for
migration, data must be broken into many overlapping tiles of size about like those shown
here and the results from each tile pieced together. That is described later in chapter .

A PEF is like a differential equation. The more plane-wave solutions you expect, the
more lags you need on the data. Returning to Figure 1, the filter must cover four traces
(or more) to enable it to predict three plane waves. In this case, na=(9,4). As usual,
the spike on the 2-D PEF is at center=(5,1). We see the filter is expanded by a factor
of jump=4. The data size is nd=(75,5) and gap=0. Before looking at the code lace on
page 4 for estimating the PEF, it might be helpful to recall the basic utilities line2cart
and cart2line on the current page for conversion between a multidimensional space and
the helix filter lag. We need to sweep across the whole filter and “stretch” its lags on the
1-axis. We do not need to stretch its lags on the 2-axis because the data has not yet been
interlaced by zero traces. The line ii[0] *= jump means we interlace the 1-axis but not
the 2-axis because the data has not yet been interlaced with zero traces.

After the PEF has been found, we can get missing data in the usual way with with
module mis2 on page 133.

7.2 MULTISCALE, SELF-SIMILAR FITTING

Large objects often resemble small objects. To express this idea we use axis scaling and
we apply it to the basic theory of prediction-error filter (PEF) fitting and missing-data
estimation.

Equations (3) and (4) compute the same thing by two different methods, r = Ya and
r = Ay. When it is viewed as fitting goals minimizing ||r|| and used along with suitable
constraints, (3) leads to finding filters and spectra, while (4) leads to finding missing data.

r1

r2

r3

r4

r5

r6

r7

r8

r9

=

y2 y1

y3 y2

y4 y3

y5 y4

y6 y5

y3 y1

y4 y2

y5 y3

y6 y4

[
a1

a2

]
or

[
r1

r2

]
=

[
Y1

Y2

]
a (7.3)

184 CHAPTER 7. SPATIAL ALIASING AND SCALE INVARIANCE

user/gee/lace.c

27 s f f i l t e r l a c e p e f (int dim /∗ number o f dimensions ∗/ ,
28 f loat ∗dd /∗ data ∗/ ,
29 int jump /∗ f i l t e r s t r e t c h ∗/ ,
30 int n /∗ data s i z e ∗/ ,
31 int ∗nd /∗ data dimensions [dim] ∗/ ,
32 int ∗ cente r /∗ f i l t e r cen te r [dim] ∗/ ,
33 int ∗gap /∗ f i l t e r gap [dim] ∗/ ,
34 int ∗na /∗ f i l t e r s i z e [dim] ∗/)
35 /∗< es t imate PEF >∗/
36 {
37 int ∗ save lags , i i [SF MAX DIM] ; /∗ ho l d ing p l ace ∗/
38 int ih , nh , lag0 , j ;
39 s f f i l t e r aa ;
40

41 aa = c r e a t e h e l i x (dim , nd , center , gap , na) ;
42 s av e l ag s = aa−>l ag ;
43 nh = aa−>nh ;
44

45 aa−>l ag = s f i n t a l l o c (nh) ; /∗ prepare i n t e r l a c e d h e l i x ∗/
46 l ag0 = s f c a r t 2 l i n e (dim , na , c ent e r) ;
47

48 for (ih =0; ih < nh ; ih++) { /∗ sweep through the f i l t e r ∗/
49 s f l i n e 2 c a r t (dim , na , ih+lag0 +1, i i) ;
50 for (j =0; j < dim ; j++) {
51 i i [j] −= cente r [j] ;
52 }
53 i i [0] ∗= jump ; /∗ i n t e r l a c e on 1−ax i s ∗/
54 aa−>l ag [ih] = s f c a r t 2 l i n e (dim , nd , i i) ;
55 }
56 na [0] ∗= jump ;
57 bound (dim , nd , nd , na , aa) ; /∗ de f i n e aa−>mis ∗/
58 na [0] /= jump ;
59

60 f i n d p e f (n , dd , aa , nh ∗2) ; /∗ es t imate aa c o e f f i c i e n t s ∗/
61 f r e e (aa−>l ag) ;
62 aa−>l ag = save l ag s ; /∗ r e s t o r e f i l t e r l a g s ∗/
63

64 return aa ;
65 }

7.2. MULTISCALE, SELF-SIMILAR FITTING 185

r1

r2

r3

r4

r5

r6

r7

r8

r9

=

a2 a1 · · · ·
· a2 a1 · · ·
· · a2 a1 · ·
· · · a2 a1 ·
· · · · a2 a1

a2 · a1 · · ·
· a2 · a1 · ·
· · a2 · a1 ·
· · · a2 · a1

y1

y2

y3

y4

y5

y6

 or
[

r1

r2

]
=

[
A1

A2

]
y

(7.4)

A new concept embedded in (3) and (4) is that one filter can be applicable for different
stretchings of the filter’s time axis. One wonders, “Of all classes of filters, what subset
remains appropriate for stretchings of the axes?”

7.2.1 Examples of scale-invariant filtering

When we consider all functions with vanishing gradient, we notice that the gradient vanishes
whether it is represented as (1,−1)/∆x or as (1, 0,−1)/2∆x. Likewise for the Laplacian,
in one dimension or more. Likewise for the wave equation, as long as there is no viscosity
and as long as the time axis and space axes are stretched by the same amount. The notion
of “dip filter” seems to have no formal definition, but the idea that the spectrum should
depend mainly on slope in Fourier space implies a filter that is scale-invariant. I expect the
most fruitful applications to be with dip filters.

Resonance or viscosity or damping easily spoils scale-invariance. The resonant frequency
of a filter shifts if we stretch the time axis. The difference equations

yt − αyt−1 = 0 (7.5)
yt − α2yt−2 = 0 (7.6)

both have the same solution yt = y0α
−t. One difference equation has the filter (1,−α),

while the other has the filter (1, 0,−α2), and α is not equal to α2. Although these operators
differ, when α ≈ 1 they might provide the same general utility, say as a roughening operator
in a fitting goal.

Another aspect to scale-invariance work is the presence of “parasitic” solutions, which
exist but are not desired. For example, another solution to yt − yt−2 = 0 is the one that
oscillates at the Nyquist frequency.

(Viscosity does not necessarily introduce an inherent length and thereby spoil scale-
invariance. The approximate frequency independence of sound absorption per wavelength
typical in real rocks is a consequence of physical inhomogeneity at all scales. See for example
Kjartansson’s constant Q viscosity, described in IEI. Kjartansson teaches that the decaying
solutions t−γ are scale-invariant. There is no “decay time” for the function t−γ . Differential
equations of finite order and difference equations of finite order cannot produce t−γ damping,
yet we know that such damping is important in observations. It is easy to manufacture t−γ

damping in Fourier space; exp[(−iω)γ+1] is used. Presumably, difference equations can
make reasonable approximations over a reasonable frequency range.)

186 CHAPTER 7. SPATIAL ALIASING AND SCALE INVARIANCE

7.2.2 Scale-invariance introduces more fitting equations

The fitting goals (3) and (4) have about double the usual number of fitting equations. Scale-
invariance introduces extra equations. If the range of scale-invariance is wide, there will be
more equations. Now we begin to see the big picture.

1. Refining a model mesh improves accuracy.

2. Refining a model mesh makes empty bins.

3. Empty bins spoil analysis.

4. If there are not too many empty bins we can find a PEF.

5. With a PEF we can fill the empty bins.

6. To get the PEF and to fill bins we need enough equations.

7. Scale-invariance introduces more equations.

An example of these concepts is shown in Figure 2.

Figure 7.2: Overcoming aliasing with multiscale fitting. lal/multiscale mshole

Additionally, when we have a PEF, often we still cannot find missing data because
conjugate-direction iterations do not converge fast enough (to fill large holes). Multiscale
convolutions should converge quicker because they are like mesh-refinement, which is quick.
An example of these concepts is shown in Figure 3.

7.2.3 Coding the multiscale filter operator

Equation (3) shows an example where the first output signal is the ordinary one and the
second output signal used a filter interlaced with zeros. We prepare subroutines that allow

7.2. MULTISCALE, SELF-SIMILAR FITTING 187

Figure 7.3: Large holes are filled
faster with multiscale operators.
lal/multiscale msiter

for more output signals, each with its own filter interlace parameter given in the table
jump[ns]. Each entry in the jump table corresponds to a particular scaling of a filter axis.
The number of output signals is ns and the number of zeros interlaced between filter points
for the j-th signal is jump[j]-1.

The multiscale helix filter is defined in module mshelix on page 7, analogous to the
single-scale module helix on page 7. A new function onescale extracts our usual helix
filter of one particular scale from the multiscale filter.

We create a multscale helix with module createmshelix on page 8. An expanded scale
helix filter is like an ordinary helix filter except that the lags are scaled according to a jump.

First we examine code for estimating a prediction-error filter that is applicable at many
scales. We simply invoke the usual filter operator hconest on page 155 for each scale.

The multiscale prediction-error filter finding subroutine is nearly identical to the usual
subroutine find pef() on page 160. (That routine cleverly ignores missing data while
estimating a PEF.) To easily extend pef to multiscale filters we replace its call to the
ordinary helix filter module hconest on page 155 by a call to mshconest. The purpose of
pack(dd,.true.) is to produce the one-dimensional array expected by our solver routines.

Similar code applies to the operator in (4) which is needed for missing data problems.
This is like mshconest on page 9 except the adjoint is not the filter but the input.

The multiscale missing-data module msmis2 is just like the usual missing-data module
mis2 on page 133 except that the filtering is done with the multiscale filter mshelicon.

188 CHAPTER 7. SPATIAL ALIASING AND SCALE INVARIANCE

user/gee/mshelix.c

25 #ifndef mshe l ix h
26

27 typedef struct m s h e l i x f i l t e r {
28 int nh , ns ;
29 f loat ∗ f l t ;
30 int ∗∗ l ag ;
31 bool ∗∗ mis ;
32 s f f i l t e r one ;
33 } ∗ms f i l t e r ;
34 /∗ˆ∗/
35

36 #endif
37

38 void one s ca l e (int i , m s f i l t e r aa)
39 /∗< s e l e c t one s c a l e from mu l t i p l e s c a l e s >∗/
40 {
41 aa−>one−>l ag = aa−>l ag [i] ;
42 i f (NULL != aa−>mis) aa−>one−>mis = aa−>mis [i] ;
43 }

7.3 References

Canales, L.L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc. Explor.
Geophys., Expanded Abstracts, 525-527.

Rothman, D., 1985, Nonlinear inversion, statistical mechanics, and residual statics estima-
tion: Geophysics, 50, 2784-2798

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56, 785-794.

7.3. REFERENCES 189

user/gee/createmshelix.c

41 ms f i l t e r c r ea t emshe l i x (int ndim /∗ number o f dimensions ∗/ ,
42 int∗ nd /∗ data s i z e [ndim] ∗/ ,
43 int∗ cente r /∗ f i l t e r cen te r [ndim] ∗/ ,
44 int∗ gap /∗ f i l t e r gap [ndim] ∗/ ,
45 int ns /∗ number o f s c a l e s ∗/ ,
46 int ∗jump /∗ f i l t e r s c a l i n g [ns] ∗/ ,
47 int∗ na /∗ f i l t e r s i z e [ndim] ∗/)
48 /∗< a l l o c a t e and output a mu l t i s c a l e h e l i x f i l t e r >∗/
49 {
50 ms f i l t e r msaa ;
51 s f f i l t e r aa ;
52 int i s , ih , nh , id , n123 , nb [SF MAX DIM] ;
53

54 aa = c r e a t e h e l i x (ndim , nd , center , gap , na) ;
55 nh = aa−>nh ;
56

57 msaa = msa l l o ca te (nh , ns) ;
58 for (i s =0; i s < ns ; i s++) {
59 for (ih =0; ih < nh ; ih++) /∗ expanded s c a l e l a g s ∗/
60 msaa−>l ag [i s] [ih] = aa−>l ag [ih]∗ jump [i s] ;
61

62 }
63 s f d e a l l o c a t e h e l i x (aa) ;
64

65 n123=1;
66 for (id =0; id < ndim ; id++) n123 ∗= nd [id] ;
67 msaa−>mis = s f b o o l a l l o c 2 (n123 , ns) ;
68

69 aa = msaa−>one ;
70 for (i s =0; i s < ns ; i s++) { /∗ f o r a l l s c a l e s ∗/
71 one s ca l e (i s , msaa) ; /∗ e x t r a c t a f i l t e r ∗/
72 aa−>mis = NULL;
73 for (id =0; id < ndim ; id++) nb [id] = na [id]∗ jump [i s] ;
74 bound (ndim , nd , nd , nb , aa) ; /∗ s e t up i t s boundar ies ∗/
75 for (id =0; id < n123 ; id++)
76 msaa−>mis [i s] [id] = aa−>mis [id] ; /∗ save them ∗/
77 f r e e (aa−>mis) ;
78 }
79

80 return msaa ;
81 }

190 CHAPTER 7. SPATIAL ALIASING AND SCALE INVARIANCE

user/gee/mshconest.c

48 for (i s =0; i s < msaa−>ns ; i s++) {
49 one s ca l e (i s , msaa) ;
50 hcone s t l op (adj , true , na , nx , a , y+i s ∗nx) ;
51 }

user/gee/mspef.c

26 void f i n d p e f (int nd /∗ data s i z e ∗/ ,
27 f loat ∗ dd /∗ data ∗/ ,
28 ms f i l t e r aa /∗ es t imated f i l t e r ∗/ ,
29 int n i t e r /∗ number o f i t e r a t i o n s ∗/)
30 /∗< es t imate PEF >∗/
31 {
32 f loat ∗ ee ;
33 int i s , id , ns ;
34

35 ns = aa−>ns ;
36 ee = s f f l o a t a l l o c (nd∗ns) ;
37 for (i s =0; i s < ns ; i s++) {
38 for (id =0; id < nd ; id++) {
39 ee [id+i s ∗nd] = dd [id] ;
40 }
41 }
42

43 mshcone s t in i t (dd , aa) ;
44 s f s o l v e r (mshconest lop , s f c g s t ep , aa−>nh , nd∗ns , aa−>f l t ,
45 ee , n i t e r , ”x0” , aa−>f l t , ”end”) ;
46 s f c g s t e p c l o s e () ;
47

48 f r e e (ee) ;
49 }

user/gee/mshelicon.c

26 for (i s =0; i s < aa−>ns ; i s++) {
27 one s ca l e (i s , aa) ;
28 s f h e l i c o n i n i t (aa−>one) ;
29 s f h e l i c o n l o p (adj , true , nx , nx , xx , yy+i s ∗nx) ;
30 }

7.3. REFERENCES 191

user/gee/msmis2.c

29 void msmis2 (int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
30 int nx /∗ data s i z e ∗/ ,
31 int ns /∗ number o f s c a l e s ∗/ ,
32 f loat ∗xx /∗ data ∗/ ,
33 ms f i l t e r aa /∗ f i l t e r ∗/ ,
34 const bool ∗known /∗ mask f o r known data ∗/)
35 /∗< i n t e r p o l a t e >∗/
36 {
37 int ix , nxs ;
38 f loat ∗dd ;
39

40 nxs = ns∗nx ;
41

42 dd = s f f l o a t a l l o c (nxs) ;
43 for (i x =0; ix < nxs ; i x++) {
44 dd [ix]=0 . ;
45 }
46

47 mshe l i c on i n i t (aa) ;
48 s f s o l v e r (mshe l i con lop , s f c g s t ep , nx , nxs , xx , dd , n i t e r ,
49 ”known” , known , ”x0” , xx , ”end”) ;
50

51 s f c g s t e p c l o s e () ;
52 f r e e (dd) ;
53 }

192 CHAPTER 7. SPATIAL ALIASING AND SCALE INVARIANCE

Chapter 8

Nonstationarity: patching

There are many reasons for cutting data planes or image planes into overlapping pieces
(patches), operating on the pieces, and then putting them back together again, as depicted
in Figure 1. The earth’s dip varies with lateral location and depth. The dip spectrum
and spatial spectrum thus also varies. The dip itself is the essence of almost all earth
mapping, and its spectrum plays an important role in the estimation any earth proper-
ties. In statistical estimation theory, the word to describe changing statistical properties is
“nonstationary”.

21 3 4 5

6 7 Patch 1

Patch 6 Patch 7

Patch 2

overlap 5 samples

o
v
e
r
la

p
 5

 s
a
m

p
le

s

n
w

in
(
1
)
=

4
0

npatch(2)=5

n
p
a
tc

h
(
1
)
=

5

nwall(2)=120

n
w

a
ll

(
1
)
=

1
5
0

nwin(2)=34

n
w

in
(
1
)
=

4
0

nwin(2)=34

Figure 8.1: Decomposing a wall of information into windows (also called patches). Left is
an example of a 2-D space input to module patch. Right shows a close-up of the output
(top left corner). pch/XFig antoine

We begin this chapter with basic patching concepts along with supporting utility code.
The language of this chapter, patch, overlap, window, wall, is two-dimensional, but it may

193

194 CHAPTER 8. NONSTATIONARITY: PATCHING

as well be three-dimensional, cube, subcube, brick, or one-dimensional, line, interval. We
sometimes use the language of windows on a wall. But since we usually want to have
overlapping windows, better imagery would be to say we assemble a quilt from patches.

The codes are designed to work in any number of dimensions. After developing the
infrastructure, we examine some two-dimensional, time- and space-variable applications:
adaptive steep-dip rejection, noise reduction by prediction, and segregation of signals and
noises.

8.1 PATCHING TECHNOLOGY

A plane of information, either data or an image, say wall(nwall1, nwall2), will be
divided up into an array of overlapping windows each window of size (nwind1,nwind2).
To choose the number of windows, you specify (npatch1,npatch2). Overlap on the 2-
axis is measured by the fraction (nwind2*npatch2)/nwall2. We turn to the language
of F90 which allows us to discuss N -dimensional hypercubes almost as easily as two-
dimensional spaces. We define an N -dimensional volume (like the wall) with the vector
nwall= (nwall1, nwall2, ...). We define subvolume size (like a 2-D window) with
the vector nwind=(nwind1, nwind2, ...). The number of subvolumes on each axis is
npatch=(npatch1, npatch2, ...). The operator patch on page 3 simply grabs one patch
from the wall, or when used in adjoint form, it puts the patch back on the wall. The number
of patches on the wall is product(npatch). Getting and putting all the patches is shown
later in module patching on page 6.

The i-th patch is denoted by the scalar counter ipatch. Typical patch extraction begins
by taking ipatch, a C linear index, and converting it to a multidimensional subscript jj
each component of which is less than npatch. The patches cover all edges and corners
of the given data plane (actually the hypervolume) even where nwall/npatch is not an
integer, even for axes whose length is not an integer number of the patch length. Where
there are noninteger ratios, the spacing of patches is slightly uneven, but we’ll see later
that it is easy to reassemble seamlessly the full plane from the patches, so the unevenness
does not matter. You might wish to review the utilities line2cart and cart2line on
the current page which convert between multidimensional array subscripts and the linear
memory subscript before looking at the patch extraction-putback code: The cartesian vector
jj points to the beginning of a patch, where on the wall the (1,1,..) coordinate of the patch
lies. Obviously this begins at the beginning edge of the wall. Then we pick jj so that the
last patch on any axis has its last point exactly abutting the end of the axis. The formula
for doing this would divide by zero for a wall with only one patch on it. This case arises
legitimately where an axis has length one. Thus we handle the case npatch=1 by abutting
the patch to the beginning of the wall and forgetting about its end. As in any code mixing
integers with floats, to guard against having a floating-point number, say 99.9999, rounding
down to 99 instead of up to 100, the rule is to always add .5 to a floating point number the
moment before converting it to an integer. Now we are ready to sweep a window to or from
the wall. The number of points in a window is size(wind) or equivalently product(nwind).

Figure 2 shows an example with five nonoverlapping patches on the 1-axis and many
overlapping patches on the 2-axis.

8.1. PATCHING TECHNOLOGY 195

user/gee/patch.c

41 void patch lop (bool adj , bool add , int nx , int ny ,
42 f loat ∗ wall , f loat ∗ wind)
43 /∗< patch opera tor >∗/
44 {
45 int i , j , s h i f t ;
46

47 s f a d j n u l l (adj , add , nx , ny , wal l , wind) ;
48 s f l i n e 2 c a r t (dim , npatch , ipatch , j j) ;
49 for (i = 0 ; i < dim ; i++) {
50 i f (npatch [i] == 1) {
51 j j [i] = 0 ;
52 } else i f (j j [i] == npatch [i]−1) {
53 j j [i] = nwal l [i] − nwind [i] ;
54 } else {
55 j j [i] = j j [i] ∗ (nwal l [i] − nwind [i]) / (npatch [i] − 1 . 0) ;
56 }
57 }
58

59 /∗ s h i f t t i l l t he patch s t a r t ∗/
60 s h i f t = s f c a r t 2 l i n e (dim , nwall , j j) ;
61 for (i = 0 ; i < ny ; i++) {
62 s f l i n e 2 c a r t (dim , nwind , i , i i) ;
63 j = s f c a r t 2 l i n e (dim , nwall , i i) + s h i f t ;
64 i f (adj) wa l l [j] += wind [i] ;
65 else wind [i] += wal l [j] ;
66 }
67 }

Figure 8.2: A plane of identi-
cal values after patches have been
cut and then added back. Re-
sults are shown for nwall=(100,30),
nwind=(17,6), npatch=(5,11). For
these parameters, there is gapping
on the horizontal axis and overlap on
the depth axis. pch/patch parcel

196 CHAPTER 8. NONSTATIONARITY: PATCHING

8.1.1 Weighting and reconstructing

The adjoint of extracting all the patches is adding them back. Because of the overlaps, the
adjoint is not the inverse. In many applications, inverse patching is required; i.e. patching
things back together seamlessly. This can be done with weighting functions. You can have
any weighting function you wish and I will provide you the patching reconstruction operator
Ĩp in

d̃ = [WwallP′WwindP]d = Ĩp d (8.1)

where d is your initial data, d̃ is the reconstructed data, P is the patching operator, P′

is adjoint patching (adding the patches). Wwind is your chosen weighting function in the
window, and Wwall is the weighting function for the whole wall. You specify any Wwind

you like, and module mkwallwt below builds the weighting function Wwall that you need to
apply to your wall of reconstructed data, so it will undo the nasty effects of the overlap of
windows and the shape of your window-weighting function. You do not need to change your
window weighting function when you increase or decrease the amount of overlap between
windows because Wwall takes care of it. The method is to use adjoint patch on page 3 to
add the weights of each window onto the wall and finally to invert the sum wherever it is
non-zero. (You lose data wherever the sum is zero).

No matrices are needed to show that this method succeeds, because data values are never
mixed with one another. An equation for any reconstructed data value d̃ as a function of
the original value d and the weights wi that hit d is d̃ = (

∑
i wid)/

∑
i wi = d. Thus, our

process is simply a “partition of unity.”

To demonstrate the program, I made a random weighting function to use in each window
with positive random numbers. The general strategy allows us to use different weights in
different windows. That flexibility adds clutter, however, so here we simply use the same
weighting function in each window.

The operator Ĩp is called “idempotent.” The word “idempotent” means “self-power,”
because for any N , 0N = 0 and 1N = 1, thus the numbers 0 and 1 share the property that
raised to any power they remain themselves. Likewise, the patching reconstruction operator
multiplies every data value by either one or zero. Figure 3 shows the result obtained when
a plane of identical constant values d is passed into the patching reconstruction operator
Ĩp. The result is constant on the 2-axis, which confirms that there is adequate sampling on
the 2-axis, and although the weighting function is made of random numbers, all trace of
random numbers has disappeared from the output. On the 1-axis the output is constant,
except for being zero in gaps, because the windows do not overlap on the 1-axis.

Figure 8.3: A plane of identi-
cal values passed through the idem-
potent patching reconstruction op-
erator. Results are shown for
the same parameters as Figure 2.
pch/patch idempatch

Module patching assists in reusing the patching technique. It takes a linear operator
F. as its argument and applies it in patches. Mathematically, this is [WwallP′WwindFP]d.
It is assumed that the input and output sizes for the operator oper are equal.

8.1. PATCHING TECHNOLOGY 197

user/gee/mkwallwt.c

25 void mkwallwt (int dim /∗ number o f dimensions ∗/ ,
26 int∗ npatch /∗ number o f pa tches [dim] ∗/ ,
27 int∗ nwal l /∗ data s i z e [dim] ∗/ ,
28 int∗ nwind /∗ patch s i z e [dim] ∗/ ,
29 f loat ∗ windwt /∗ window we i gh t ing (input) ∗/ ,
30 f loat ∗ wallwt /∗ wa l l we i gh t ing (output) ∗/)
31 /∗< make wa l l we igh t >∗/
32 {
33 int i , j , ip , np , n , nw ;
34

35 np = 1 ;
36 n = 1 ;
37 nw = 1 ;
38

39 for (j =0; j < dim ; j++) {
40 np ∗= npatch [j] ;
41 n ∗= nwal l [j] ;
42 nw ∗= nwind [j] ;
43 }
44

45 for (i = 0 ; i < n ; i++) {
46 wallwt [i] = 0 . ;
47 }
48

49 pa t c h i n i t (dim , npatch , nwall , nwind) ;
50

51 for (ip =0; ip < np ; ip++) {
52 patch lop (true , true , n , nw, wallwt , windwt) ;
53 pa t ch c l o s e () ;
54 }
55

56 for (i = 0 ; i < n ; i++) {
57 i f (wallwt [i] != 0 .) wallwt [i] = 1 . / wallwt [i] ;
58 }
59 }

198 CHAPTER 8. NONSTATIONARITY: PATCHING

user/gee/patching.c

51 for (i =0; i < n ; i++) data [i] = 0 . ;
52

53 pa t c h i n i t (dim , npatch , nwall , nwind) ;
54 for (ip = 0 ; ip < np ; ip++) {
55 /∗ modl −> winmodl ∗/
56 patch lop (f a l s e , f a l s e , n , nw, modl , winmodl) ;
57 /∗ winmodl −> windata ∗/
58 oper (f a l s e , f a l s e , nw, nw, winmodl , windata) ;
59 /∗ app ly window we i gh t ing ∗/
60 for (iw=0; iw < nw; iw++) windata [iw] ∗= windwt [iw] ;
61 /∗ data <− windata ∗/
62 patch lop (true , true , n , nw, data , windata) ;
63 pa t ch c l o s e () ;
64 }
65

66 /∗ windwt −> wa l lw t ∗/
67 mkwallwt (dim , npatch , nwall , nwind , windwt , wallwt) ;
68

69 /∗ app ly wa l l we i gh t ing ∗/
70 for (i =0; i < n ; i++) data [i] ∗= wallwt [i] ;

8.1.2 2-D filtering in patches

A way to do time- and space-variable filtering is to do invariant filtering within each patch.
Typically, we apply a filter, say Fp, in each patch. The composite operator, filtering in
patches, F̃, is given by

d̃ = [WwallP′WwindFpP] d = F̃ d (8.2)

I built a triangular weighting routine tentn() that tapers from the center of the patch of
the filter’s outputs towards the edges. Accomplishing this weighting is complicated by (1)
the constraint that the filter must not move off the edge of the input patch and (2) the
alignment of the input and the output. The layout for prediction-error filters is shown in
Figure 4. We need a weighting function that vanishes where the filter has no outputs.

Figure 8.4: Domain of in-
puts and outputs of a two-
dimensional prediction-error filter.
pch/XFig rabdomain

Output

Input

The amplitude of the weighting function is not very important because we have learned how
to put signals back together properly for arbitrary weighting functions. We can use any

8.1. PATCHING TECHNOLOGY 199

Figure 8.5: Placement of tent-
like weighting function in the
space of filter inputs and outputs.
pch/XFig rabtent

Tent

pyramidal or tent-like shape that drops to zero outside the domain of the filter output. The
job is done by subroutine tentn(). A new parameter needed by tentn is a, the coordinate
of the beginning of the tent.

user/gee/tent.c

45 /∗ l oop in the window ∗/
46 for (i =0; i < nw; i++) {
47 s f l i n e 2 c a r t (dim , nwind , i , x) ;
48

49 windwt [i] = 1 . ;
50 for (j =0; j < dim ; j++) {
51 i f (x [j] >= s t a r t [j] && x [j] <= end [j]) {
52 w = (x [j]−mid [j]) / wid [j] ;
53 windwt [i] ∗= SF MAX(0. ,1 . − f abs (w)) ;
54 } else {
55 windwt [i] = 0 . ;
56 }
57 }
58 }

In applications where triangle weights are needed on the inputs (or where we can work
on a patch without having interference with edges), we can get “triangle tent” weights from
tentn() if we set filter dimensions and lags to unity, as shown in Figure ??.

Figure 8.6: Window weights from
tentn() with nwind=(61,19),
center=(31,1), a=(1,1) .
pch/patch wind1wt

Triangle weighting functions can sum to a constant if the spacing is such that the
midpoint of one triangle is at the beginning of the next. I imagined in two dimensions that
something similar would happen with shapes like Egyptian pyramids of Cheops, 2 − |x −
y| + |x + y|. Instead, the equation (1 − |x|)(1 − |y|) which has the tent-like shape shown
in Figure ?? adds up to the constant flat top shown in Figure ??. (To add interest to

200 CHAPTER 8. NONSTATIONARITY: PATCHING

Figure ??, I separated the windows by a little more than the precise matching distance.)
In practice we may chose window shapes and overlaps for reasons other than the constancy
of the sum of weights, because mkwallwt on page 5 accounts for that.

Figure 8.7: (Inverse) wall
weights with n1=100, w1=61,
k1=2, n2=30, w2=19, k2=2
pch/patch wall1wt

Finally is an example of filtering a plane of uniform constants with an impulse function.
The impulse function is surrounded by zeros, so the filter output patches are smaller than
the input patches back in Figure 3. Here in Figure 8, both axes need more window density.

Figure 8.8: Filtering in patches Mid
with the same parameters as in Fig-
ures 2 and 3. Additionally, the filter
parameters are a1=11 a2=5 lag1=6
lag2=1 . Thus, windows are cen-
tered on the 1-axis and pushed back
out the 2-axis. pch/patch cinloip

8.1.3 Designing a separate filter for each patch

Recall the prediction-error filter subroutine find pef() on page 160. Given a data plane,
this subroutine finds a filter that tends to whiten the spectrum of that data plane. The
output is white residual. Now suppose we have a data plane where the dip spectrum is
changing from place to place. Here it is natural to apply subroutine find pef() in local
patches. This is done by subroutine find lopef(). The output of this subroutine is an
array of helix-type filters, which can be used, for example, in a local convolution operator
loconvol We notice that when a patch has fewer regression equations than the filter has
coefficients, then the filter is taken to be that of the previous patch.

8.1.4 Triangular patches

I have been running patching code for several years and my first general comment is that
realistic applications often call for patches of different sizes and different shapes. (Tutorial,
non-interactive C code is poorly suited to this need.) Raw seismic data in particular seems
more suited to triangular shapes. It is worth noting that the basic concepts in this chapter
have ready extension to other shapes. For example, a rectangular shape could be duplicated
into two identical patches; then data in one could be zeroed above the diagonal and in the
other below; you would have to allow, of course, for overlap the size of the filter. Module
pef on page 160 automatically ignores the zeroed portion of the triangle, and it is irrelevant

8.1. PATCHING TECHNOLOGY 201

user/gee/lopef.c

58 pa t c h i n i t (dim , npatch , nwall , nwind) ;
59 for (ip =0; ip < np ; ip++) {
60 bb = aa+ip ;
61

62 patch lop (f a l s e , f a l s e , n , nw, wal l , windata) ;
63 i f (NULL != mask) {
64 patch lop (f a l s e , f a l s e , n , nw, mask , winmask) ;
65 for (iw=0; iw < nw; iw++) {
66 known [iw] = (winmask [iw] != 0 .) ;
67 }
68 f ind mask (nw, known , bb) ;
69 }
70 for (mis=iw=0; iw < nw; iw++) {
71 i f (! bb−>mis [iw]) mis++;
72 }
73 i f (mis > nh) { /∗ enough equa t ions ∗/
74 f i n d p e f (nw, windata , bb , nh) ;
75 } else i f (ip > 1) { /∗ use l a s t PEF ∗/
76 for (ih =0; ih < nh ; ih++) {
77 bb−> f l t [ih] = (bb−1)−> f l t [ih] ;
78 }
79 }
80 pa t ch c l o s e () ;
81 }

user/gee/loconvol.c

27 void l o c o n v o l i n i t (s f f i l t e r aa in)
28 /∗< i n i t i a l i z e wi th the f i r s t f i l t e r >∗/
29 {
30 aa = aa in ;
31 }
32

33 void l o c onvo l l o p (bool adj , bool add , int nx , int ny ,
34 f loat ∗xx , f loat ∗yy)
35 /∗< convo lve >∗/
36 {
37 s f h e l i c o n i n i t (aa) ;
38 aa++;
39

40 s f h e l i c o n l o p (adj , add , nx , ny , xx , yy) ;
41 }

202 CHAPTER 8. NONSTATIONARITY: PATCHING

what mis2() on page 133 does with a zeroed portion of data, if a triangular footprint of
weights is designed to ignore its output.

EXERCISES:

1 Code the linear operator WwallP′WwindP including its adjoint.

2 Smoothing program. Some familiar operations can be seen in a new light when done
in patches. Patch the data. In each patch, find the mean value. Replace each value by
the mean value. Reconstruct the wall.

3 Smoothing while filling missing data. This is like smoothing, but you set window
weights to zero where there is no data. Because there will be a different set of weights
in each window, you will need to make a simple generalization to mkwallwt on page 5.

4 Gain control. Divide the data into patches. Compute the square root of the sum
of the squares of all the data in each patch. Divide all values in that patch by this
amount. Reassemble patches.

8.2 STEEP-DIP DECON

Normally, when an autoregression filter (PEF) predicts a value at a point it uses values at
earlier points. In practice, a gap may also be set between the predicted value and the earlier
values. What is not normally done is to supplement the fitting signals on nearby traces.
That is what we do here. We allow the prediction of a signal to include nearby signals at
earlier times. The times accepted in the goal are inside a triangle of velocity less than about
the water velocity. The new information allowed in the prediction is extremely valuable for
water-velocity events. Wavefronts are especially predictable when we can view them along
the wavefront (compared to perpendicular or at some other angle from the wavefront). It
is even better on land, where noises move more slowly at irregular velocities, and are more
likely to be aliased.

Using lopef on page 9, the overall process proceeds independently in each of many
overlapping windows. The most important practical aspect is the filter masks, described
next.

8.2.1 Dip rejecting known-velocity waves

Consider the two-dimensional filter

+1
−1 0 −1

+1
(8.3)

When this this filter is applied to a field profile with 4 ms time sampling and 6 m trace

8.2. STEEP-DIP DECON 203

spacing, it should perfectly extinguish 1.5 km/s water-velocity noises. Likewise, the filter

+1
0
0

−1 0 −1
0
0

+1

(8.4)

should perfectly extinguish water noise when the trace spacing is 18 m. Such noise is, of
course, spatially aliased for all temporal frequencies above 1/3 of Nyquist, but that does
not matter. The filter extinguishes them perfectly anyway. Inevitably, the filter cannot
both extinguish the noise and leave the signal untouched where the alias of one is equal
to the other. So we expect the signal to be altered where it matches aliased noise. This
simple filter does worse than that. On horizontal layers, for example, signal wavelets become
filtered by (1, 0, 0,−2, 0, 0, 1). If the noise is overwhelming, this signal distortion is a small
price to pay for eliminating it. If the noise is tiny, however, the distortion is unforgivable.
In the real world, data-adaptive deconvolution is usually a good compromise.

The two-dimensional deconvolutions filters we explore here look like this:

x x x x x x x x x
x x x x x x x x x
. x x x x x x x .
. x x x x x x x .
. x x x x x x x .
. . x x x x x . .
. . x x x x x . .
. . x x x x x . .
. . . x x x . . .
. . . x x x . . .
. . . x x x . . .
.
.
.
. . . . 1

(8.5)

where each . denotes a zero and each x denotes a (different) adjustable filter coefficient that
is chosen to minimize the power out.

You can easily imagine variations on this shape, such as a diamond instead of a triangle.
I invite you to experiment with the various shapes that suggest themselves.

8.2.2 Tests of steep-dip decon on field data

Low-velocity noises on shot records are often not fully suppressed by stacking because the
noises are spatially aliased. Routine field arrays are not perfect and the noise is often

204 CHAPTER 8. NONSTATIONARITY: PATCHING

extremely strong. An interesting, recently-arrived data set worth testing is shown in Figure
9.

Figure 8.9: Gravel plain ground roll (Middle East) Worth testing. pch/mideast gravel2D

I scanned the forty Yilmaz and Cumro shot profiles for strong low-velocity noises and I
selected six examples. To each I applied an AGC that is a slow function of time and space
(triangle smoothing windows with triangle half-widths of 200 time points and 4 channels).
Because my process simultaneously does both low-velocity rejection and deconvolution, I
prepared more traditional 1-D deconvolutions for comparison. This is done in windows of
250 time points and 25 channels, the same filter being used for each of the 25 channels in
the window. In practice, of course, considerably more thought would be given to optimal
window sizes as a function of the regional nature of the data. The windows were overlapped
by about 50%. The same windows are used on the steep-dip deconvolution.

It turned out to be much easier than expected and on the first try I got good results
on all all six field profiles tested. I have not yet tweaked the many adjustable parameters.
As you inspect these deconvolved profiles from different areas of the world with different
recording methods, land and marine, think about how the stacks should be improved by
the deconvolution. Stanford Exploration Project report 77 (SEP-77) shows the full suite of
results. Figure 10 is a sample of them.

Unexpectedly, results showed that 1-D deconvolution also suppresses low-velocity noises.
An explanation can be that these noises are often either low-frequency or quasimonochro-
matic.

As a minor matter, fundamentally, my code cannot work ideally along the side bound-

8.2. STEEP-DIP DECON 205

Figure 8.10: Top is a North African vibrator shot profile (Y&C #10) after AGC. Middle
is gapped 1-D decon. Bottom is steep-dip decon. pch/steep wz

206 CHAPTER 8. NONSTATIONARITY: PATCHING

aries because there is no output (so I replaced it by the variance scaled input). With a
little extra coding, better outputs could be produced along the sides if we used spatially
one-sided filters like

x x x x x
. x x x x
. x x x x
. . x x x
. . x x x
. . . x x
. . . x x
.
.
. . . . 1

(8.6)

These would be applied on one side of the shot and the opposite orientation would be
applied on the other side. With many kinds of data sets, such as off-end marine recording
in which a ship tows a hydrophone streamer, the above filter might be better in the interior
too.

8.2.3 Are field arrays really needed?

Field arrays cancel random noise but their main function, I believe, is to cancel low-velocity
coherent noises, something we now see is handled effectively by steep-dip deconvolution.
While I do not advocate abandoning field arrays, it is pleasing to notice that with the
arrival of steep-dip deconvolution, we are no longer so dependent on field arrays and per-
haps coherent noises can be controlled where field arrays are impractical, as in certain 3-D
geometries. A recently arrived 3-D shot profile from the sand dunes in the Middle East
is Figure 11. The strong hyperbolas are ground roll seen in a line that does not include
the shot. The open question here is, how should we formulate the problem of ground-roll
removal in 3-D?

8.2.4 Which coefficients are really needed?

Steep-dip decon is a heavy consumer of computer time. Many small optimizations could
be done, but more importantly, I feel there are some deeper issues that warrant further
investigation. The first question is, how many filter coefficients should there be and where
should they be? We would like to keep the number of nonzero filter coefficients to a minimum
because it would speed the computation, but more importantly I fear the filter output
might be defective in some insidious way (perhaps missing primaries) when too many filter
coefficients are used. Perhaps if 1-D decon were done sequentially with steep-dip decon the
number of free parameters (and hence the amount of computer time) could be dropped even
further. I looked at some of the filters and they scatter wildly with the Nyquist frequency
(particularly those coefficients on the trace with the “1” constraint). This suggests using
a damping term on the filter coefficients, after which perhaps the magnitude of a filter
coefficient will be a better measure of whether this practice is really helpful. Also, it would,
of course, be fun to get some complete data sets (rather than a single shot profile) to see
the difference in the final stack.

8.3. INVERSION AND NOISE REMOVAL 207

Figure 8.11: Sand dunes. One shot, six parallel receiver lines. pch/mideast dune3D

8.3 INVERSION AND NOISE REMOVAL

Here we relate the basic theoretical statement of geophysical inverse theory to the basic
theoretical statement of separation of signals from noises.

A common form of linearized geophysical inverse theory is

0 ≈ W(Lm− d) (8.7)
0 ≈ εAm (8.8)

We choose the operator L = I to be an identity and we rename the model m to be signal
s. Define noise by the decomposition of data into signal plus noise, so n = d − s. Finally,
let us rename the weighting (and filtering) operations W = N on the noise and A = S on
the signal. Thus the usual model fitting becomes a fitting for signal-noise separation:

0 ≈ N(−n) = N(s− d) (8.9)
0 ≈ εSs (8.10)

8.4 SIGNAL-NOISE DECOMPOSITION BY DIP

Choose noise n to be energy that has no spatial correlation and signal s to be energy
with spatial correlation consistent with one, two, or possibly a few plane-wave segments.

208 CHAPTER 8. NONSTATIONARITY: PATCHING

(Another view of noise is that a huge number of plane waves is required to define the
wavefield; in other words, with Fourier analysis you can make anything, signal or noise.)
We know that a first-order differential equation can absorb (kill) a single plane wave, a
second-order equation can absorb one or two plane waves, etc. In practice, we will choose
the order of the wavefield and minimize power to absorb all we can, and call that the signal.

S is the operator that absorbs (by prediction error) the plane waves and N absorbs
noises and ε > 0 is a small scalar to be chosen. The difference between S and N is the
spatial order of the filters. Because we regard the noise as spatially uncorrelated, N has
coefficients only on the time axis. Coefficients for S are distributed over time and space.
They have one space level, plus another level for each plane-wave segment slope that we
deem to be locally present. In the examples here the number of slopes is taken to be two.
Where a data field seems to require more than two slopes, it usually means the “patch”
could be made smaller.

It would be nice if we could forget about the goal (10) but without it the goal (9), would
simply set the signal s equal to the data d. Choosing the value of ε will determine in some
way the amount of data energy partitioned into each. The last thing we will do is choose
the value of ε, and if we do not find a theory for it, we will experiment.

The operators S and N can be thought of as “leveling” operators. The method of least-
squares sees mainly big things, and spectral zeros in S and N tend to cancel spectral lines
and plane waves in s and n. (Here we assume that power levels remain fairly level in time.
Were power levels to fluctuate in time, the operators S and N should be designed to level
them out too.)

None of this is new or exciting in one dimension, but I find it exciting in more dimensions.
In seismology, quasisinusoidal signals and noises are quite rare, whereas local plane waves
are abundant. Just as a short one-dimensional filter can absorb a sinusoid of any frequency,
a compact two-dimensional filter can absorb a wavefront of any dip.

To review basic concepts, suppose we are in the one-dimensional frequency domain.
Then the solution to the fitting goals (10) and (9) amounts to minimizing a quadratic form
by setting to zero its derivative, say

0 =
∂

∂s′
(
(s′ − d′)N′N(s− d) + ε2s′S′Ss

)
(8.11)

which gives the answer

s =
(

N′N
N′N + ε2S′S

)
d (8.12)

n = d− s =
(

ε2S′S
N′N + ε2S′S

)
d (8.13)

To make this really concrete, consider its meaning in one dimension, where signal is white
S′S = 1 and noise has the frequency ω0, which is killable with the multiplier N′N =
(ω − ω0)2. Now we recognize that equation (12) is a notch filter and equation (13) is a
narrow-band filter.

The analytic solutions in equations (12) and (13) are valid in 2-D Fourier space or dip
space too. I prefer to compute them in the time and space domain to give me tighter control

8.4. SIGNAL-NOISE DECOMPOSITION BY DIP 209

on window boundaries, but the Fourier solutions give insight and offer a computational speed
advantage.

Let us express the fitting goal in the form needed in computation.[
0
0

]
≈

[
N
εS

]
s +

[
−Nd

0

]
(8.14)

user/gee/signoi.c

46 void s i g n o i l o p (bool adj , bool add , int n1 , int n2 ,
47 f loat ∗data , f loat ∗ s i gn)
48 /∗< l i n e a r opera tor >∗/
49 {
50 s f h e l i c o n i n i t (nn) ;
51 p o l y d i v i n i t (nd , s s) ;
52

53 s f a d j n u l l (adj , add , n1 , n2 , data , s i gn) ;
54

55 s f h e l i c o n l o p (f a l s e , f a l s e , n1 , n1 , data , dd) ;
56 s f s o l v e r p r e c (s f h e l i c o n l o p , s f c g s t ep , po lyd iv lop ,
57 nd , nd , nd , s ign , dd , n i t e r , eps , ”end”) ;
58 s f c g s t e p c l o s e () ;
59

60 nn++;
61 s s++;
62 }

As with the missing-data subroutines, the potential number of iterations is large, because
the dimensionality of the space of unknowns is much larger than the number of iterations
we would find acceptable. Thus, sometimes changing the number of iterations niter can
create a larger change than changing epsilon. Experience shows that helix preconditioning
saves the day.

8.4.1 Signal/noise decomposition examples

Figure 12 demonstrates the signal/noise decomposition concept on synthetic data. The
signal and noise have similar frequency spectra but different dip spectra.

Before I discovered helix preconditioning, Ray Abma found that different results were
obtained when the fitting goal was cast in terms of n instead of s. Theoretically it should
not make any difference. Now I believe that with preconditioning, or even without it, if
there are enough iterations, the solution should be independent of whether the fitting goal
is cast with either n or s.

Figure 13 shows the result of experimenting with the choice of ε. As expected, increasing
ε weakens s and increases n. When ε is too small, the noise is small and the signal is almost
the original data. When ε is too large, the signal is small and coherent events are pushed
into the noise. (Figure 13 rescales both signal and noise images for the clearest display.)

210 CHAPTER 8. NONSTATIONARITY: PATCHING

Figure 8.12: The input signal is on the left. Next is that signal with noise added. Next,
for my favorite value of epsilon=1., is the estimated signal and the estimated noise.
pch/signoi signoi

Figure 8.13: Left is an estimated signal-noise pair where epsilon=4 has improved the
appearance of the estimated signal but some coherent events have been pushed into
the noise. Right is a signal-noise pair where epsilon=.25, has improved the appear-
ance of the estimated noise but the estimated signal looks no better than original data.
pch/signoi signeps

8.4. SIGNAL-NOISE DECOMPOSITION BY DIP 211

Notice that the leveling operators S and N were both estimated from the original signal
and noise mixture d = s + n shown in Figure 12. Presumably we could do even better if
we were to reestimate S and N from the estimates s and n in Figure 13.

8.4.2 Spitz for variable covariances

Since signal and noise are uncorrelated, the spectrum of data is the spectrum of the signal
plus that of the noise. An equation for this idea is

σ2
d = σ2

s + σ2
n (8.15)

This says resonances in the signal and resonances in the noise will both be found in the
data. When we are given σ2

d and σ2
n it seems a simple matter to subtract to get σ2

s . Actually
it can be very tricky. We are never given σ2

d and σ2
n; we must estimate them. Further, they

can be a function of frequency, wave number, or dip, and these can be changing during
measurements. We could easily find ourselves with a negative estimate for σ2

s which would
ruin any attempt to segregate signal from noise. An idea of Simon Spitz can help here.

Let us reexpress equation (15) with prediction-error filters.

1
ĀdAd

=
1

ĀsAs
+

1
ĀnAn

=
ĀsAs + ĀnAn

(ĀsAs)(ĀnAn)
(8.16)

Inverting

ĀdAd =
(ĀsAs) (ĀnAn)
ĀsAs + ĀnAn

(8.17)

The essential feature of a PEF is its zeros. Where a PEF approaches zero, its inverse is
large and resonating. When we are concerned with the zeros of a mathematical function we
tend to focus on numerators and ignore denominators. The zeros in ĀsAs compound with
the zeros in ĀnAn to make the zeros in ĀdAd. This motivates the “Spitz Approximation.”

ĀdAd = (ĀsAs) (ĀnAn) (8.18)

It usually happens that we can find a patch of data where no signal is present. That’s
a good place to estimate the noise PEF An. It is usually much harder to find a patch of
data where no noise is present. This motivates the Spitz approximation which by saying
Ad = AsAn tells us that the hard-to-estimate As is the ratio As = Ad/An of two easy-to-
estimate PEFs.

It would be computationally convenient if we had As expressed not as a ratio. For this,
form the signal u = And by applying the noise PEF An to the data d. The spectral relation
is

σ2
u = σ2

d/σ2
n (8.19)

Inverting this expression and using the Spitz approximation we see that a PEF estimate on
u is the required As in numerator form because

Au = Ad/An = As (8.20)

212 CHAPTER 8. NONSTATIONARITY: PATCHING

8.4.3 Noise removal on Shearer’s data

Professor Peter Shearer1 gathered the earthquakes from the IDA network, an array of about
25 widely distributed gravimeters, donated by Cecil Green, and Shearer selected most of
the shallow-depth earthquakes of magnitude greater than about 6 over the 1981-91 time
interval, and sorted them by epicentral distance into bins 1◦ wide and stacked them. He
generously shared his edited data with me and I have been restacking it, compensating for
amplitude in various ways, and planning time and filtering compensations.

Figure 14 shows a test of noise subtraction by multidip narrow-pass filtering on the
Shearer-IDA stack. As with prediction there is a general reduction of the noise. Unlike
with prediction, weak events are preserved and noise is subtracted from them too.

Besides the difference in theory, the separation filters are much smaller because their
size is determined by the concept that “two dips will fit anything locally” (a2=3), versus
the prediction filters “needing a sizeable window to do statistical averaging.” The same
aspect ratio a1/a2 is kept and the page is now divided into 11 vertical patches and 24
horizontal patches (whereas previously the page was divided in 3 × 4 patches). In both
cases the patches overlap about 50%. In both cases I chose to have about ten times as
many equations as unknowns on each axis in the estimation. The ten degrees of freedom
could be distributed differently along the two axes, but I saw no reason to do so.

8.4.4 The human eye as a dip filter

Although the filter seems to be performing as anticipated, no new events are apparent. I
believe the reason that we see no new events is that the competition is too tough. We are
competing with the human eye, which through aeons of survival has become is a highly
skilled filter. Does this mean that there is no need for filter theory and filter subroutines
because the eye can do it equally well? It would seem so. Why then pursue the subject
matter of this book?

The answer is 3-D. The human eye is not a perfect filter. It has a limited (though
impressive) dynamic range. A nonlinear display (such as wiggle traces) can prevent it from
averaging. The eye is particularly good at dip filtering, because the paper can be looked
at from a range of grazing angles and averaging window sizes miraculously adjust to the
circumstances. The eye can be overwhelmed by too much data. The real problem with
the human eye is that the retina is only two-dimensional. The world contains many three-
dimensional data volumes. I don’t mean the simple kind of 3-D where the contents of the
room are nicely mapped onto your 2-D retina. I mean the kind of 3-D found inside a bowl
of soup or inside a rock. A rock can be sliced and sliced and sliced again and each slice
is a picture. The totality of these slices is a movie. The eye has a limited ability to deal
with movies by optical persistence, an averaging of all pictures shown in about 1/10 second
interval. Further, the eye can follow a moving object and perform the same averaging. I
have learned, however, that the eye really cannot follow two objects at two different speeds

1 I received the data for this stack from Peter Shearer at the Cecil and Ida Green Institute of Geophysics
and Planetary Physics of the Scripps Oceanographic Institute. I also received his permission to redistribute
it to friends and colleagues. Should you have occasion to copy it please reference ? ? it properly. Examples
of earlier versions of these stacks are found in the references. Professor Shearer may be willing to supply
newer and better stacks. His electronic mail address is shearer@mahi.ucsd.edu.

8.4. SIGNAL-NOISE DECOMPOSITION BY DIP 213

Figure 8.14: Stack of Shearer’s IDA data (left). Multidip filtered (right). It is pleasing
that the noise is reduced while weak events are preserved. pch/ida sneps

214 CHAPTER 8. NONSTATIONARITY: PATCHING

and average them both over time. Now think of the third dimension in Figure 14. It is the
dimension that I summed over to make the figure. It is the 1◦ range bin. If we were viewing
the many earthquakes in each bin, we would no longer be able to see the out-of-plane
information which is the in-plane information in Figure 14.

To view genuinely 3-D information we must see a movie, or we must compress the 3-D
to 2-D. There are only a small number of ways to compress 3-D to 2-D. One is to select
planes from the volume. One is to sum the volume over one of its axes, and the other is a
compromise, a filtering over the axis we wish to abandon before subsampling on it. That
filtering is a local smoothing. If the local smoothing has motion (out of plane dip) of various
velocities (various dips), then the desired process of smoothing the out of plane direction is
what we did in the in-plane direction in Figure 14. But Figure 14 amounts to more than
that. It amounts to a kind of simultaneous smoothing in the two most coherent directions
whereas in 3-D your eye can smooth in only one direction when you turn your head along
with the motion.

If the purpose of data processing is to collapse 3-D data volumes to 2-D where they are
comprehensible to the human eye, then perhaps data-slope adaptive, low-pass filtering
in the out-of-plane direction is the best process we can invent.

My purpose in filtering the earthquake stacks is to form a guiding “pilot trace” to the
analysis of the traces within the bin. Within each bin, each trace needs small time shifts
and perhaps a small temporal filter to best compensate it to . . . to what? to the pilot
trace, which in these figures was simply a stack of traces in the bin. Now that we have
filtered in the range direction, however, the next stack can be made with a better quality
pilot.

8.5 SPACE-VARIABLE DECONVOLUTION

Filters sometimes change with time and space. We sometimes observe signals whose spec-
trum changes with position. A filter that changes with position is called nonstationary.
We need an extension of our usual convolution operator hconest on page 155. Concep-
tually, little needs to be changed besides changing aa(ia) to aa(ia,iy). But there is a
practical problem. Fomel and I have made the decision to clutter up the code somewhat
to save a great deal of memory. This should be important to people interested in solving
multidimensional problems with big data sets.

Normally, the number of filter coefficients is many fewer than the number of data points,
but here we have very many more. Indeed, there are na times more. Variable filters require
na times more memory than the data itself. To make the nonstationary helix code more
practical, we now require the filters to be constant in patches. The data type for nonsta-
tionary filters (which are constant in patches) is introduced in module nhelix, which is a
simple modification of module helix on page 7. What is new is the integer valued vector
pch(nd) the size of the one-dimensional (helix) output data space. Every filter output point
is to be assigned to a patch. All filters of a given patch number will be the same filter. Non-
stationary helixes are created with createnhelix, which is a simple modification of module
createhelix on page 28. Notice that the user must define the pch(product(nd)) vector
before creating a nonstationary helix. For a simple 1-D time-variable filter, presumably

8.5. SPACE-VARIABLE DECONVOLUTION 215

user/gee/nhelix.c

10 typedef struct n h e l i x f i l t e r {
11 int np ;
12 s f f i l t e r ∗ hlx ;
13 bool ∗ mis ;
14 int ∗pch ;
15 } ∗ n f i l t e r ;

pch would be something like (1, 1, 2, 2, 3, 3, · · ·). For multidimensional patching we need to
think a little more.

Finally, we are ready for the convolution operator. The operator nhconest on page 25
allows for a different filter in each patch. A filter output y[iy] has its filter from the patch
ip=aa->pch[iy].

Because of the massive increase in the number of filter coefficients, allowing these many
filters takes us from overdetermined to very undetermined. We can estimate all these filter
coefficients by the usual deconvolution fitting goal (6.18)

0 ≈ r = YKa + r0 (8.21)

but we need to supplement it with some damping goals, say

0 ≈ YKa + r0

0 ≈ ε Ra
(8.22)

where R is a roughening operator to be chosen.

Experience with missing data in Chapter 3 shows that when the roughening operator R
is a differential operator, the number of iterations can be large. We can speed the calculation
immensely by “preconditioning”. Define a new variable m by a = R−1m and insert it into
(22) to get the equivalent preconditioned system of goals.

0 ≈ YKR−1m (8.23)
0 ≈ ε m (8.24)

The fitting (23) uses the operator YKR−1. For Y we can use subroutine nhconest()
on page 25; for the smoothing operator R−1 we can use nonstationary polynomial division
with operator npolydiv():

Now we have all the pieces we need. As we previously estimated stationary filters with
the module pef on page 160, now we can estimate nonstationary PEFs with the module
npef on page 27. The steps are hardly any different. Near the end of module npef is a
filter reshape from a 1-D array to a 2-D array.

Figure 15 shows a synthetic data example using these programs. As we hope for decon-
volution, events are compressed. The compression is fairly good, even though each event has
a different spectrum. What is especially pleasing is that satisfactory results are obtained

216 CHAPTER 8. NONSTATIONARITY: PATCHING

user/gee/createnhelix.c

29 n f i l t e r c r e a t e nh e l i x (int dim /∗ number o f dimensions ∗/ ,
30 int ∗nd /∗ data s i z e [dim] ∗/ ,
31 int ∗ cente r /∗ f i l t e r cen te r [dim] ∗/ ,
32 int ∗gap /∗ f i l t e r gap [dim] ∗/ ,
33 int ∗na /∗ f i l t e r s i z e [dim] ∗/ ,
34 int ∗pch /∗ pa tch ing [product (nd)] ∗/)
35 /∗< a l l o c a t e and output a non−s t a t i ona r y f i l t e r >∗/
36 {
37 n f i l t e r nsaa ;
38 s f f i l t e r aa ;
39 int n123 , np , ip , ∗nh , i ;
40

41 aa = c r e a t e h e l i x (dim , nd , center , gap , na) ;
42

43 n123=1;
44 for (i =0; i < dim ; i++) {
45 n123 ∗= nd [i] ;
46 }
47 np = pch [0] ;
48 for (i =0; i < n123 ; i++) {
49 i f (pch [i] > np) np=pch [i] ;
50 }
51 np++;
52

53 nh = s f i n t a l l o c (np) ;
54 for (ip =0; ip < np ; ip++) {
55 nh [ip] = aa−>nh ;
56 }
57 nsaa = na l l o c a t e (np , n123 , nh , pch) ;
58 for (ip =0; ip < np ; ip++) {
59 for (i =0; i < aa−>nh ; i++) {
60 nsaa−>hlx [ip]−> l ag [i] = aa−>l ag [i] ;
61 }
62 nbound (ip , dim , nd , na , nsaa) ;
63 }
64

65 s f d e a l l o c a t e h e l i x (aa) ;
66

67 return nsaa ;
68 }

8.5. SPACE-VARIABLE DECONVOLUTION 217

user/gee/nhconest.c

51 for (i y =0; iy < ny ; i y++) {
52 i f (aa−>mis [i y]) continue ;
53

54 ip = aa−>pch [i y] ;
55 l ag = aa−>hlx [ip]−> l ag ;
56 na = aa−>hlx [ip]−>nh ;
57

58 for (i a =0; i a < na ; i a++) {
59 i x = iy − l ag [i a] ;
60 i f (i x < 0) continue ;
61

62 i f (adj) {
63 a [i a+nhmax∗ ip] += y [iy] ∗ x [i x] ;
64 } else {
65 y [i y] += a [i a+nhmax∗ ip] ∗ x [i x] ;
66 }
67 }
68 }

Figure 8.15: Time variable deconvolution with two free filter coefficients and a gap of 6.
pch/tvdecon tvdecon

218 CHAPTER 8. NONSTATIONARITY: PATCHING

user/gee/npolydiv.c

56 for (id =0; id < nd ; id++) {
57 t t [id] = adj ? yy [id] : xx [id] ;
58 }
59

60 i f (adj) {
61 for (i y=nd−1; i y >= 0 ; iy−−) {
62 ip = aa−>pch [i y] ;
63 l ag = aa−>hlx [ip]−> l ag ;
64 f l t = aa−>hlx [ip]−> f l t ;
65 na = aa−>hlx [ip]−>nh ;
66 for (i a =0; i a < na ; i a++) {
67 i x = iy − l ag [i a] ;
68 i f (i x < 0) continue ;
69 t t [i x] −= f l t [i a] ∗ t t [i y] ;
70 }
71 }
72 for (id =0; id < nd ; id++) {
73 xx [id] += t t [id] ;
74 }
75 } else {
76 for (i y =0; iy < nd ; iy++) {
77 ip = aa−>pch [i y] ;
78 l ag = aa−>hlx [ip]−> l ag ;
79 f l t = aa−>hlx [ip]−> f l t ;
80 na = aa−>hlx [ip]−>nh ;
81 for (i a =0; i a < na ; i a++) {
82 i x = iy − l ag [i a] ;
83 i f (i x < 0) continue ;
84 t t [i y] −= f l t [i a] ∗ t t [i x] ;
85 }
86 }
87 for (id =0; id < nd ; id++) {
88 yy [id] += t t [id] ;
89 }
90 }

8.5. SPACE-VARIABLE DECONVOLUTION 219

user/gee/npef.c

29 void f i n d p e f (int nd /∗ data s i z e ∗/ ,
30 f loat ∗dd /∗ data ∗/ ,
31 n f i l t e r aa /∗ es t imated f i l t e r ∗/ ,
32 n f i l t e r r r /∗ r e g u l a r i z a t i o n f i l t e r ∗/ ,
33 int n i t e r /∗ number o f i t e r a t i o n s ∗/ ,
34 f loat eps /∗ r e g u l a r i z a t i o n parameter ∗/ ,
35 int nh /∗ f i l t e r s i z e ∗/)
36 /∗< es t imate non−s t a t i ona r y PEF >∗/
37 {
38 int ip , ih , na , np , nr ;
39 f loat ∗ f l t ;
40

41 np = aa−>np ;
42 nr = np∗nh ;
43 f l t = s f f l o a t a l l o c (nr) ;
44

45 nhc on e s t i n i t (dd , aa , nh) ;
46 npo l yd i v 2 i n i t (nr , r r) ;
47

48 s f s o l v e r p r e c (nhconest lop , s f c g s t ep , npo lyd iv2 lop ,
49 nr , nr , nd , f l t , dd , n i t e r , eps , ”end”) ;
50 s f c g s t e p c l o s e () ;
51 npo l yd i v2 c l o s e () ;
52

53 for (ip =0; ip < np ; ip++) {
54 na = aa−>hlx [ip]−>nh ;
55 for (ih =0; ih < na ; ih++) {
56 aa−>hlx [ip]−> f l t [ih] = − f l t [ip ∗nh + ih] ;
57 }
58 }
59

60 f r e e (f l t) ;
61 }

220 CHAPTER 8. NONSTATIONARITY: PATCHING

in truly small numbers of iterations (about three). The example is for two free filter coef-
ficients (1, a1, a2) per output point. The roughening operator R was taken to be (1,−2, 1)
which was factored into causal and anticausal finite difference.

I hope also to find a test case with field data, but experience in seismology is that spectral
changes are slow, which implies unexciting results. Many interesting examples should exist
in two- and three-dimensional filtering, however, because reflector dip is always changing
and that changes the spatial spectrum.

In multidimensional space, the smoothing filter R−1 can be chosen with interesting
directional properties. Sergey, Bob, Sean and I have joked about this code being the “double
helix” program because there are two multidimensional helixes in it, one the smoothing
filter, the other the deconvolution filter. Unlike the biological helixes, however, these two
helixes do not seem to form a symmetrical pair.

EXERCISES:

1 Is nhconest on page 25 the inverse operator to npolydiv on page 26? Do they com-
mute?

2 Sketch the matrix corresponding to operator nhconest on page 25. hints: Do not try
to write all the matrix elements. Instead draw short lines to indicate rows or columns.
As a “warm up” consider a simpler case where one filter is used on the first half of
the data and another filter for the other half. Then upgrade that solution from two to
about ten filters.

Chapter 9

Plane waves in three dimensions

In this chapter we seek a deeper understanding of plane waves in three dimensions, where
the examples and theory typically refer to functions of time t and two space coordinates
(x, y), or to 3-D migration images where the t coordinate is depth or traveltime depth. As
in Chapter , we need to decompose data volumes into subcubes, shown in Figure 9.1.

Figure 9.1: Left is space of
inputs and outputs. Right is
their separation during analysis.
lmn/XFig rayab3D

In this chapter we will see that the wave model implies the 3-D whitener is not a
cube filter but two planar filters. The wave model allows us to determine the scale factor
of a signal, even where signals fluctuate in strength because of interference. Finally, we
examine the local-monoplane concept that uses the superposition principle to distinguish a
sedimentary model cube from a data cube.

9.1 THE LEVELER: A VOLUME OR TWO PLANES?

In two dimensions, levelers were taken to be PEFs, small rectangular planes of numbers in
which the time axis included enough points to include reasonable stepouts were included
and the space axis contained one level plus another space level, for each plane-wave slope
supposed to be present.

We saw that a whitening filter in three dimensions is a small volume with shape defined
by subroutine createhelix(). It might seem natural that the number of points on the
x- and y-axes be related to the number of plane waves present. Instead, I assert that
if the volume contains plane waves, we don’t want a volume filter to whiten it; we can
use a pair of planar filters to do so and the order of those filters is the number of planes
thought to be simultaneously present. I have no firm mathematical proofs, but I offer you

221

222 CHAPTER 9. PLANE WAVES IN THREE DIMENSIONS

some interesting discussions, examples, and computer tools for you to experiment with. It
seems that some applications call for the volume filter while others call for the two planes.
Because two planes of numbers generally contain many fewer adjustable values than a
volume, statistical-estimation reasons also favor the planes.

What is the lowest-order filter that, when applied to a volume, will destroy one and
only one slope of plane wave?

First we seek the answer to the question, “What is the lowest order filter that will
destroy one and only one plane?” To begin with, we consider that plane to be horizontal so
the volume of numbers is f(t, x, y) = b(t) where b(t) is an arbitrary function of time. One
filter that has zero-valued output (destroys the plane) is ∂x ≡ ∂/∂x. Another is the operator
∂y ≡ ∂/∂y. Still another is the Laplacian operator which is ∂xx + ∂yy ≡ ∂2/∂x2 + ∂2/∂y2.

The problem with ∂/∂x is that although it destroys the required plane, it also destroys
f(t, x, y) = a(t, y) where a(t, y) is an arbitrary function of (t, y) such as a cylinder with
axis parallel to the x-axis. The operator ∂/∂y has the same problem but with the axes
rotated. The Laplacian operator not only destroys our desired plane, but it also destroys
the well known nonplanar function eax cos(ay), which is just one example of the many other
interesting shapes that constitute solutions to Laplace’s equation.

I remind you of a basic fact: When we set up the fitting goal 0 ≈ Af , the quadratic form
minimized is f ′A′Af , which by differentiation with respect to f ′ gives us (in a constraint-free
region) A′Af = 0. So, minimizing the volume integral (actually the sum) of the squares of
the components of the gradient implies that Laplace’s equation is satisfied.

In any volume, the lowest-order filter that will destroy level planes and no other wave
slope is a filter that has one input and two outputs. That filter is the gradient, (∂/∂x, ∂/∂y).
Both outputs vanish if and only if the plane has the proper horizontal orientation. Other
objects and functions are not extinguished (except for the non-wave-like function f(t, x, y) =
const). It is annoying that we must deal with two outputs and that will be the topic of
further discussion.

A wavefield of tilted parallel planes is f(t, x, y) = g(τ − pxx − pyy), where g() is an
arbitrary one-dimensional function. The operator that destroys these tilted planes is the
two-component operator (∂x + px∂t, ∂y + py∂t).

The operator that destroys a family of dipping planes

f(t, x, y) = g(τ − pxx− pyy)

is ∂
∂x + px

∂
∂t

∂
∂y + py

∂
∂t

9.1. THE LEVELER: A VOLUME OR TWO PLANES? 223

9.1.1 PEFs overcome spatial aliasing of difference operators

The problem I found with finite-difference representations of differential operators is that
they are susceptible to spatial aliasing. Even before they encounter spatial aliasing, they are
susceptible to accuracy problems known in finite-difference wave propagation as “frequency
dispersion.” The aliasing problem can be avoided by the use of spatial prediction operators
such as

· a
· b
1 c
· d
· e

(9.1)

where the vertical axis is time; the horizontal axis is space; and the “·”s are zeros. Another
possibility is the 2-D whitening filter

f a
g b
1 c
· d
· e

(9.2)

Imagine all the coefficients vanished but d = −1 and the given 1. Such filters would
annihilate the appropriately sloping plane wave. Slopes that are not exact integers are also
approximately extinguishable, because the adjustable filter coefficients can interpolate in
time. Filters like (9.2) do the operation ∂x + px∂t, which is a component of the gradient
in the plane of the wavefront, and they include a temporal deconvolution aspect and a
spatial coherency aspect. My experience shows that the operators (9.1) and (9.2) behave
significantly differently in practice, and I am not prepared to fully explain the difference,
but it seems to be similar to the gapping of one-dimensional filters.

You might find it alarming that your teacher is not fully prepared to explain the dif-
ference between a volume and two planes, but please remember that we are talking about
the factorization of the volumetric spectrum. Spectral matrices are well known to have
structure, but books on theory typically handle them as simply λI. Anyway, wherever you
see an A in a three-dimensional context, you may wonder whether it should be interpreted
as a cubic filter that takes one volume to another, or as two planar filters that take one
volume to two volumes as shown in Figure 9.2.

Figure 9.2: An inline 2-D PEF
and a crossline 2-D PEF both
applied throughout the volume.
To find each filter, minimize
each output power independently.
lmn/XFig rayab3Doper

224 CHAPTER 9. PLANE WAVES IN THREE DIMENSIONS

9.1.2 My view of the world

I start from the idea that the four-dimensional world (t, x, y, z) is filled with expanding
spherical waves and with quasispherical waves that result from reflection from quasiplanar
objects and refraction through quasihomogeneous materials. We rarely, if ever see in an
observational data cube, an entire expanding spherical wave, but we normally have a two- or
three-dimensional slice with some wavefront curvature. We analyze data subcubes that I call
bricks. In any brick we see only local patches of apparent plane waves. I call them platelets.
From the microview of this brick, the platelets come from the “great random-point-generator
in the sky,” which then somehow convolves the random points with a platelike impulse
response. If we could deconvolve these platelets back to their random source points, there
would be nothing left inside the brick because the energy would have gone outside. We
would have destroyed the energy inside the brick. If the platelets were coin shaped, then
the gradient magnitude would convert each coin to its circular rim. The plate sizes and
shapes are all different and they damp with distance from their centers, as do Gaussian
beams. If we observed rays instead of wavefront platelets then we might think of the world
as being filled with noodles, and then. . . .

How is it possible that in a small brick we can do something realistic about deconvolving
a spheroidal impulse response that is much bigger than the brick? The same way as in one
dimension, where in a small time interval we can estimate the correct deconvolution filter
of a long resonant signal. A three-point filter destroys a sinusoid.

The inverse filter to the expanding spherical wave might be a huge cube. Good approx-
imations to this inverse at the brick level might be two small planes. Their time extent
would be chosen to encompass the slowest waves, and their spatial extent could be two or
three points, representing the idea that normally we can listen to only one person at a time,
occasionally we can listen to two, and we can never listen to three people talking at the
same time.

9.2 WAVE INTERFERENCE AND TRACE SCALING

Although neighboring seismometers tend to show equal powers, the energy on one seismome-
ter can differ greatly from that of a neighbor for both theoretical reasons and practical ones.
Should a trace ever be rescaled to give it the same energy as its neighbors? Here we review
the strong theoretical arguments against rescaling. In practice, however, especially on land
where coupling is irregular, scaling seems a necessity. The question is, what can go wrong
if we scale traces to have equal energy, and more basically, where the proper scale factor
cannot be recorded, what should we do to get the best scale factor? A related question is
how to make good measurements of amplitude versus offset. To understand these issues we
review the fundamentals of wave interference.

Theoretically, a scale-factor problem arises because locally, wavefields, not energies, add.
Nodes on standing waves are familiar from theory, but they could give you the wrong idea
that the concept of node is one that applies only with sinusoids. Actually, destructive
interference arises anytime a polarity-reversed waveform bounces back and crosses itself.
Figure 9.3 shows two waves of opposite polarity crossing each other. Observe that one seis-
mogram has a zero-valued signal, while its neighbors have anomalously higher amplitudes

9.2. WAVE INTERFERENCE AND TRACE SCALING 225

Figure 9.3: Superposition of
plane waves of opposite polarity.
lmn/scale super

and higher energies than are found far away from the interference. The situation shown in
Figure 9.3 does not occur easily in nature. Reflection naturally comes to mind, but usually
the reflected wave crosses the incident wave at a later time and then they don’t extinguish.
Approximate extinguishing occurs rather easily when waves are quasi-monochromatic. We
will soon see, however, that methodologies for finding scales all begin with deconvolution
and that eliminates the monochromatic waves.

9.2.1 Computing the proper scale factor for a seismogram

With data like Figure 9.3, rescaling traces to have equal energy would obviously be wrong.
The question is, “How can we determine the proper scale factor?” As we have seen, a
superposition of N plane waves exactly satisfies an N-th order (in x) difference equation.
Given a 2-D wave field, we can find its PEF by minimizing output power. Then we ask the
question, could rescaling the traces give a lower output power? To answer this, we set up an
optimization goal: Given the leveler (be it a cubic PEF or two planar ones), find the best
trace scales. (After solving this, we could return to re-estimate the leveler, and iterate.) To
solve for the scales, we need a subroutine that scales traces and the only tricky part is that
the adjoint should bring us back to the space of scale factors. This is done by scaletrace
Notice that to estimate scales, the adjoint forms an inner product of the raw data on the

user/gee/scaletrace.c

40 for (i=i 2 =0; i 2 < n2 ; i 2++) {
41 for (i 1 =0; i 1 < n1 ; i 1++, i++) {
42 i f (adj) s c a l e [i 2] += sdata [i] ∗ data [i] ;
43 else sdata [i] += s c a l e [i 2] ∗ data [i] ;
44 }
45 }

226 CHAPTER 9. PLANE WAVES IN THREE DIMENSIONS

previously scaled data. Let the operator implemented by scaletrace be denoted by D,
which is mnemonic for “data” and for “diagonal matrix,” and let the vector of scale factors
be denoted by s and the leveler by A. Now we consider the fitting goal 0 ≈ ADs. The
trouble with this fitting goal is that the solution is obviously s = 0. To avoid the trivial
solution s = 0, we can choose from a variety of supplemental fitting goals. One possibility
is that for the i-th scale factor we could add the fitting goal si ≈ 1. Another possibility,
perhaps better if some of the signals have the opposite of the correct polarity, is that the
sum of the scales should be approximately unity. I regret that time has not yet allowed me
to identify some interesting examples and work them through.

9.3 LOCAL MONOPLANE ANNIHILATOR

LOMOPLAN (LOcal MOno PLane ANnihilator) is a data-adaptive filter that extinguishes
a local monoplane, but cannot extinguish a superposition of several planes. We presume
an ideal sedimentary model as made of (possibly curved) parallel layers. Because of the
superposition principle, data can be a superposition of several plane waves, but the ideal
model should consist locally of only a single plane. Thus, LOMOPLAN extinguishes an ideal
model, but not typical data. I conceived of LOMOPLAN as the “ultimate” optimization
criterion for inversion problems in reflection seismology (Claerbout, 1992b) but it has not
yet demonstrated that it can attain that lofty goal. Instead, however, working in two
dimensions, it is useful in data interpretation and in data quality inspection.

The main way we estimate parameters in reflection seismology is that we maximize the
coherence of theoretically redundant measurements. Thus, to estimate velocity and statics
shifts, we maximize something like the power in the stacked data. Here I propose another
optimization criterion for estimating model parameters and missing data. An interpreter
looking at a migrated section containing two dips in the same place suspects wave superpo-
sition more likely than bedding texture superposition. To minimize the presence of multiple
dipping events in the same place, we should use the mono plane annihilator (MOPLAN)
filter as the weighting operator for any fitting goal. Because the filter is intended for use on
images or migrated data, not on data directly, I call it a plane annihilator, not a planewave
annihilator. (A time-migration or merely a stack, however, might qualify as an image.)
We should avoid using the word “wavefront” because waves readily satisfy the superposi-
tion principle, whereas images do not, and it is this aspect of images that I advocate and
formulate as “prior information.”

An example of a MOPLAN in two dimensions, (∂x + px∂τ), is explored in Chapter
4 of PVI Claerbout (1992a), where the main goal is to estimate the (τ, x)-variation of
px. Another family of MOPLANs arise from multidimensional prediction-error filtering
described earlier in this book and in PVI, Chapter 8.

Here I hypothesize that a MOPLAN may be a valuable weighting function for many
estimation problems in seismology. Perhaps we can estimate statics, interval velocity, and
missing data if we use the principle of minimizing the power out of a LOcal MOno PLane
ANnihilator (LOMOPLAN) on a migrated section. Thus, those embarrassing semicircles
that we have seen for years on our migrated sections may hold one of the keys for unlocking
the secrets of statics and lateral velocity variation. I do not claim that this concept is as
powerful as our traditional methods. I merely claim that we have not yet exploited this

9.3. LOCAL MONOPLANE ANNIHILATOR 227

concept in a systematic way and that it might prove useful where traditional methods break.

For an image model of nonoverlapping curved planes, a suitable choice of weighting
function for fitting problems is the local filter that destroys the best fitting local plane.

9.3.1 Mono-plane deconvolution

The coefficients of a 2-D monoplane annihilator filter are defined to be the same as those
of a 2-D PEF of spatial order unity; in other words, those defined by either (9.1) or (9.2).

The filter can be lengthened in time but not in space. The choice of exactly two columns
is a choice to have an analytic form that can exactly destroy a single plane, but cannot
destroy two. Applied to two signals that are statistically independent, the filter (9.2) reduces
to the well-known prediction-error filter in the left column and zeros in the right column.
If the filter coefficients were extended in both directions on t and to the right on x, the
two-dimensional spectrum of the input would be flattened.

9.3.2 Monoplanes in local windows

The earth dip changes rapidly with location. In a small region there is a local dip and dip
bandwidth that determines the best LOMOPLAN (LOcal MOPLAN). To see how to cope
with the edge effects of filtering in a small region, and to see how to patch together these
small regions, recall subroutine patchn() on page ?? and the weighting subroutines that
work with it.

Figure 9.4 shows a synthetic model that illustrates local variation in bedding. Notice
dipping bedding, curved bedding, unconformity between them, and a fault in the curved
bedding. Also, notice that the image has its amplitude tapered to zero on the left and
right sides. After local monoplane annihilation (LOMOPLAN), the continuous bedding is
essentially gone. The fault and unconformity remain.

The local spatial prediction-error filters contain the essence of a factored form of the
inverse spectrum of the model.

Because the plane waves are local, the illustrations were made with module lopef on
page ??.

9.3.3 Crossing dips

Figure 9.5 deserves careful study. The input frame is dipping events with amplitudes slowly
changing as they cross the frame. The dip of the events is not commensurate with the mesh,
so we use linear interpolation that accounts for the irregularity along an event. The output
panel tends to be small where there is only a single dip present. Where two dips cross, they
tend to be equal in magnitude. Studying the output more carefully, we notice that of the
two dips, the one that is strongest on the input becomes irregular and noisy on the output,
whereas the other dip tends to remain phase-coherent.

228 CHAPTER 9. PLANE WAVES IN THREE DIMENSIONS

Figure 9.4: Left is a synthetic reflectivity model. Right is the result of local monoplane
annihilation. lmn/sep73 sigmoid

Figure 9.5: Conflicting dips before and after application of a local monoplane annihilator.
lmn/sep73 conflict

9.3. LOCAL MONOPLANE ANNIHILATOR 229

I could rebuild Figure 9.5 to do a better job of suppressing monodip areas if I passed the
image through a lowpass filter, and then designed a gapped deconvolution operator. Instead,
I preferred to show you high-frequency noise in the place of an attenuated wavefront.

The residual of prediction-error deconvolution tends to have a white spectrum in time.
This aspect of deconvolution is somewhat irritating and in practice it requires us to post-
filter for display, to regain continuity of signals. As is well known (PVI, for example), an
alternative to postfiltering is to put a gap in the filter. A gapped filter should work with
2-D filters too, but it is too early to describe how experimenters will ultimately choose to
arrange gaps, if any, in 2-D filters. There are some interesting possibilities. (Inserting a gap
also reduces the required number of CD iterations.)

9.3.4 Tests of 2-D LOMOPLAN on field data

Although the LOMOPLAN concept was developed for geophysical models, not raw data,
initial experience showed that the LOMOPLAN program is effective for quality testing data
and data interpretation.

Some field-data examples are in Figures 9.6 and 9.7. These results are not surprising. A
dominant local plane is removed, and noise or the second-from-strongest local plane is left.
These data sets fit the local plane model so well that subtracting the residual noise from
the data made little improvement. These figures are clearer on a video screen. To facilitate
examination of the residual on Figure 9.6 on paper (which has a lesser dynamic range than
video), I recolored the white residual with a short triangle filter on the time axis.

Figure 9.6: Data section from the Gulf of Mexico (left) and after LOMOPLAN (right)
Press button for movie. lmn/sep73 dgulf

The residual in Figure 9.7 is large at the dead trace and wherever the data contains

230 CHAPTER 9. PLANE WAVES IN THREE DIMENSIONS

crossing events. Also, closer examination showed that the strong residual trace near 1.1 km
offset is apparently slightly time-shifted, almost certainly a cable problem, perhaps resulting
from a combination of the stepout and a few dead pickups. Overall, the local-plane residual
shows a low-frequency water-velocity wave seeming to originate from the ship.

Figure 9.7: Portion of Yilmaz and Cumro data set 27 (left) and after LOMOPLAN (right).
Press button for movie. lmn/sep73 yc27

9.4 GRADIENT ALONG THE BEDDING PLANE

The LOMOPLAN (LOcal MOnoPLane ANnihilator) filter in three dimensions is a decon-
volution filter that takes a volume in and produces two volumes out. The x-output volume
results from a first order prediction-error filter on the x-axis, and the y-output volume is
likewise on the y-axis.

Although I conceived of 2-D LOMOPLAN as the “ultimate” optimization criterion for
inversion problems in reflection seismology of sedimentary sections, it turned out that it was
more useful in data interpretation and in data-quality inspection. In this study, I sought to
evaluate usefulness with three-dimensional data such as 3-D stacks or migrated volumes, or
2-D prestack data.

In experimenting with 3-D LOMOPLAN, I came upon a conceptual oversimplification,
which although it is not precisely correct, gives a suitable feeling of the meaning of the
operator. Imagine that the earth was flat horizontal layers, except for occasional faults.
Then, to find the faults you might invoke the horizontal gradient of the 3-D continuum of
data. The horizontal components of gradient vanish except at a fault, where their relative
magnitudes tell you the orientation of the fault. Instead of using the gradient vector, you
could use prediction-error filters of first order (two components) along x and y directions.

9.4. GRADIENT ALONG THE BEDDING PLANE 231

3-D LOMOPLAN is like this, but the flat horizontal bedding may be dipping or curved.
No output is produced (ideally) except at faults. The 3-D LOMOPLAN is like the gradient
along the plane of the bedding. It is nonzero where the bedding has an intrinsic change.

LOMOPLAN flags the bedding where there is an intrinsic change.

9.4.1 Definition of LOMOPLAN in 3-D

Three-dimensional LOMOPLAN is somewhat like multiple passes of two-dimensional LO-
MOPLAN; i.e., we first LOMOPLAN the (t, x)-plane for each y, and then we LOMOPLAN
the (t, y)-plane for each x. Actually, 3-D LOMOPLAN is a little more complicated than
this. Each LOMOPLAN filter is designed on all the data in a small (t, x, y) volume.

To put the LOcal in LOMOPLAN we use subcubes (bricks). Recall that we can do 2-D
LOMOPLAN with the prediction-error subroutine find lopef() on page ??. To do 3-D
LOMOPLAN we need to make two calls to subroutine find lopef(), one for the x-axis
in-line planar filters and one for the y-axis crossline filters. That is what I will try next
time I install this book on a computer with a bigger memory.

9.4.2 The quarterdome 3-D synthetic (qdome)

Figure 9.4 used a model called “Sigmoid.” Using the same modeling concepts, I set out to
make a three-dimensional model. The model has horizontal layers near the top, a Gaussian
appearance in the middle, and dipping layers on the bottom, with horizontal unconformities
between the three regions. Figure 9.8 shows a vertical slice through the 3-D “qdome” model
and components of its LOMOPLAN. There is also a fault that will be described later. The
most interesting part of the qdome model is the Gaussian center. I started from the equation
of a Gaussian

z(x, y, t) = e−(x2+y2)/t2 (9.3)

and backsolved for t

t(x, y, z) =

√
x2 + y2

− ln z
(9.4)

Then I used a random-number generator to make a blocky one-dimensional impedance
function of t. At each (x, y, z) location in the model I used the impedance at time t(x, y, z),
and finally defined reflectivity as the logarithmic derivative of the impedance. Without
careful interpolation (particularly where the beds pinch out) a variety of curious artifacts
appear. I hope to find time to use the experience of making the qdome model to make
a tutorial lesson on interpolation. A refinement to the model is that within a certain
subvolume the time t(x, y, z) is given a small additive constant. This gives a fault along
the edge of the subvolume. Ray Abma defined the subvolume for me in the qdome model.
The fault looks quite realistic, and it is easy to make faults of any shape, though I wonder
how they would relate to realistic fault dynamics. Figure 9.9 shows a top view of the 3-D
qdome model and components of its LOMOPLAN. Notice that the cross-line spacing has
been chosen to be double the in-line spacing. Evidently a consequence of this, in both
Figure 9.8 and Figure 9.9, is that the Gaussian dome is not so well suppressed on the
crossline cut as on the in-line cut. By comparison, notice that the horizontal bedding

232 CHAPTER 9. PLANE WAVES IN THREE DIMENSIONS

Figure 9.8: Left is a vertical slice through the 3-D “qdome” model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN.
lmn/sep77 qdomesico

above the dome is perfectly suppressed, whereas the dipping bedding below the dome is
imperfectly suppressed.

Finally, I became irritated at the need to look at two output volumes. Because I rarely if
ever interpreted the polarity of the LOMOPLAN components, I formed their sum of squares
and show the single square root volume in Figure 9.10.

9.5 3-D SPECTRAL FACTORIZATION

Hi Sergey, Matt, and Sean, Here are my latest speculations, plans:

The 3-D Lomoplan resembles a gradient, one field in, two or three out. Lomoplan times
its adjoint is like a generalized laplacian. Factorizing it yields a lomoplan generalization of
the helix derivative, i.e. a one-to-one operator with the same spectral charactoristic as the
original lomoplan. It will probably not come out to be a juxtaposition of planes, will be
more cube like.

The advantage of being one-to-one is that it can be used as a preconditioner. The
application, naturally enough, is estimating things with a prescribed dip spectrum. Things
like missing data and velocities.

Why use multiplanar lomoplan estimates if they will then be converted by this com-
plicated process into a cube? Why not estimate the cube directly? Maybe to impose the
“pancake” model instead of the noodle model of covariance. Maybe to reduce the number

9.5. 3-D SPECTRAL FACTORIZATION 233

Figure 9.9: Left is a horizontal slice through the 3-D qdome model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN.
lmn/sep77 qdometoco

Figure 9.10: Left is the model. Right is the magnitude of the LOMOPLAN components in
Figure 9.9. lmn/sep77 qdometora

234 CHAPTER 9. PLANE WAVES IN THREE DIMENSIONS

of coefficients to estimate.

I haven’t figured out yet how to convert this speculation into an example leading to
some figures. If you like the idea, feel free to beat me to it :)

REFERENCES

Claerbout, J. F., 1992a, Earth Soundings Analysis: Processing Versus Inversion: Blackwell
Scientific Publications.

——–, 1992b, Information from smiles: Mono-plane-annihilator weighted regression, in
SEP-73, 409–420, Stanford Exploration Project.

Chapter 10

Some research examples

SEP students and researchers have extended the work described in this book. A few of their
results are summarized here without the details and working codes.

10.1 GULF OF MEXICO CUBE

David Lumley from Chevron gave James Rickett some nice 3-D data from the Gulf of
Mexico. There movie shows time slices at intervals of about 6ms. These slices are about 18
feet apart. That is about 7,000 years of deposition in the Gulf of Mexico. Altogether it is
about a million years (about the age of the human species). Figure 10.1 shows some nice
time slices.

Figure 10.1: Some time slices show a salt dome, some river channels, a dendritic drainage
canyon, and a fault. rez/canyon canyon

235

236 CHAPTER 10. SOME RESEARCH EXAMPLES

	Basic operators and adjoints
	Programming linear operators
	FAMILIAR OPERATORS
	Adjoint derivative
	Transient convolution
	Internal convolution
	Zero padding is the transpose of truncation
	Adjoints of products are reverse-ordered products of adjoints
	Nearest-neighbor coordinates
	Data-push binning
	Linear interpolation
	Spray and sum : scatter and gather
	Causal and leaky integration
	Backsolving, polynomial division and deconvolution
	The basic low-cut filter
	Nearest-neighbor normal moveout (NMO)
	Coding chains and arrays

	ADJOINT DEFINED: DOT-PRODUCT TEST
	Definition of a vector space
	Dot-product test for validity of an adjoint
	The word ``adjoint''
	Matrix versus operator
	Inverse operator
	Automatic adjoints

	Model fitting by least squares
	HOW TO DIVIDE NOISY SIGNALS
	Dividing by zero smoothly
	Damped solution
	Smoothing the denominator spectrum
	Imaging
	Formal path to the low-cut filter
	MULTIVARIATE LEAST SQUARES
	Inside an abstract vector
	Normal equations
	Differentiation by a complex vector
	From the frequency domain to the time domain

	KRYLOV SUBSPACE ITERATIVE METHODS
	Sign convention
	Method of random directions and steepest descent
	Null space and iterative methods
	Why steepest descent is so slow
	Conjugate direction
	Routine for one step of conjugate-direction descent
	A basic solver program
	Test case: solving some simultaneous equations

	INVERSE NMO STACK
	THE WORLD OF CONJUGATE GRADIENTS
	Physical nonlinearity
	Statistical nonlinearity
	Coding nonlinear fitting problems
	Standard methods
	Understanding CG magic and advanced methods
	REFERENCES
	Empty bins and inverse interpolation
	MISSING DATA IN ONE DIMENSION
	Missing-data program

	WELLS NOT MATCHING THE SEISMIC MAP
	SEARCHING THE SEA OF GALILEE
	INVERSE LINEAR INTERPOLATION
	Abandoned theory for matching wells and seismograms

	PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION

	The helical coordinate
	FILTERING ON A HELIX
	Review of 1-D recursive filters
	Multidimensional deconvolution breakthrough
	Examples of simple 2-D recursive filters
	Coding multidimensional de/convolution
	Causality in two-dimensions
	FINITE DIFFERENCES ON A HELIX
	Matrix view of the helix
	CAUSALITY AND SPECTAL FACTORIZATION
	The spectral factorization concept
	Cholesky decomposition
	Toeplitz methods
	Kolmogoroff spectral factorization
	WILSON-BURG SPECTRAL FACTORIZATION
	Wilson-Burg theory

	HELIX LOW-CUT FILTER
	THE MULTIDIMENSIONAL HELIX

	SUBSCRIPTING A MULTIDIMENSIONAL HELIX
	Preconditioning
	PRECONDITIONED DATA FITTING
	Preconditioner with a starting guess
	PRECONDITIONING THE REGULARIZATION
	The second miracle of conjugate gradients
	Importance of scaling
	Statistical interpretation
	The preconditioned solver
	OPPORTUNITIES FOR SMART DIRECTIONS
	NULL SPACE AND INTERVAL VELOCITY
	Balancing good data with bad
	Lateral variations
	Blocky models

	INVERSE LINEAR INTERPOLATION
	EMPTY BINS AND PRECONDITIONING
	SEABEAM: Filling the empty bins with a laplacian
	Three codes for inverse masking

	THEORY OF UNDERDETERMINED LEAST-SQUARES
	SCALING THE ADJOINT
	A FORMAL DEFINITION FOR ADJOINTS
	Multidimensional autoregression
	Time domain versus frequency domain
	SOURCE WAVEFORM, MULTIPLE REFLECTIONS
	TIME-SERIES AUTOREGRESSION
	PREDICTION-ERROR FILTER OUTPUT IS WHITE
	PEF whiteness proof in 1-D
	Simple dip filters
	PEF whiteness proof in 2-D
	Examples of modeling and deconvolving with a 2-D PEF
	Seismic field data examples

	PEF ESTIMATION WITH MISSING DATA
	Internal boundaries to multidimensional convolution
	Finding the prediction-error filter

	TWO-STAGE LINEAR LEAST SQUARES
	Adding noise (Geostat)
	Inversions with geostat
	Infill of 3-D seismic data from a quarry blast
	Imposing prior knowledge of symmetry
	Hexagonal coordinates
	BOTH MISSING DATA AND UNKNOWN FILTER
	Objections to interpolation error
	Packing both missing data and filter into a vector

	LEVELED INVERSE INTERPOLATION
	Test results for leveled inverse interpolation
	Analysis for leveled inverse interpolation
	Seabeam: theory to practice
	Risky ways to do nonlinear optimization
	The bane of PEF estimation
	MULTIVARIATE SPECTRUM
	What should we optimize?
	Confusing terminology for data covariance
	Hermeneutics
	Spatial aliasing and scale invariance
	INTERPOLATION BEYOND ALIASING
	Interlacing a filter
	MULTISCALE, SELF-SIMILAR FITTING
	Examples of scale-invariant filtering
	Scale-invariance introduces more fitting equations
	Coding the multiscale filter operator

	References
	Nonstationarity: patching
	PATCHING TECHNOLOGY
	Weighting and reconstructing
	2-D filtering in patches
	Designing a separate filter for each patch
	Triangular patches

	STEEP-DIP DECON
	Dip rejecting known-velocity waves
	Tests of steep-dip decon on field data
	Are field arrays really needed?
	Which coefficients are really needed?

	INVERSION AND NOISE REMOVAL
	SIGNAL-NOISE DECOMPOSITION BY DIP
	Signal/noise decomposition examples
	Spitz for variable covariances
	Noise removal on Shearer's data
	The human eye as a dip filter

	SPACE-VARIABLE DECONVOLUTION

	Plane waves in three dimensions
	THE LEVELER: A VOLUME OR TWO PLANES?
	PEFs overcome spatial aliasing of difference operators
	My view of the world
	WAVE INTERFERENCE AND TRACE SCALING
	Computing the proper scale factor for a seismogram

	LOCAL MONOPLANE ANNIHILATOR
	Mono-plane deconvolution
	Monoplanes in local windows
	Crossing dips
	Tests of 2-D LOMOPLAN on field data

	GRADIENT ALONG THE BEDDING PLANE
	Definition of LOMOPLAN in 3-D
	The quarterdome 3-D synthetic (qdome)

	3-D SPECTRAL FACTORIZATION
	Some research examples
	GULF OF MEXICO CUBE

