
Model fitting by least squares

Jon Claerbout

The first level of computer use in science and engineering is modeling. Beginning
from physical principles and design ideas, the computer mimics nature. Then the worker
looks at the result, thinks a while, alters the modeling program, and tries again. The next,
deeper level of computer use is that the computer examines the results of modeling and
reruns the modeling job. This deeper level is variously called “fitting,” “estimation,”
or “inversion.” We inspect the conjugate-direction method of fitting and write a
subroutine for it that is used in most of the examples in this book.

UNIVARIATE LEAST SQUARES

A single parameter fitting problem arises in Fourier analysis, where we seek a “best answer”
at each frequency, then combine all the frequencies to get a best signal. Thus, emerges a
wide family of interesting and useful applications. However, Fourier analysis first requires
us to introduce complex numbers into statistical estimation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-
domain division is time-domain deconvolution. This division is challenging when F has
observational error. Failure erupts if zero division occurs. More insidious are the poor
results we obtain when zero division is avoided by a near miss.

Dividing by zero smoothly

Think of any real numbers x, y, and f and any program containing x = y/f . How can
we change the program so that it never divides by zero? A popular answer is to change
x = y/f to x = yf/(f2 + ε2), where ε is any tiny value. When |f | >> |ε|, then x is
approximately y/f as expected. But when the divisor f vanishes, the result is safely zero
instead of infinity. The transition is smooth, but some criterion is needed to choose the value
of ε. This method may not be the only way or the best way to cope with zero division,
but it is a good method, and permeates the subject of signal analysis.

To apply this method in the Fourier domain, suppose that X, Y , and F are complex
numbers. What do we do then with X = Y/F? We multiply the top and bottom by the
complex conjugate F , and again add ε2 to the denominator. Thus,

X(ω) =
F (ω) Y (ω)

F (ω)F (ω) + ε2
(1)

Now, the denominator must always be a positive number greater than zero, so division is
always safe. Equation (1) ranges continuously from inverse filtering, with X = Y/F , to
filtering with X = FY , which is called “matched filtering.” Notice that for any complex
number F , the phase of 1/F equals the phase of F , so the filters have the same phase.

2

Damped solution

Another way to say x = y/f is to say fx− y is small, or (fx− y)2 is small. This does not
solve the problem of f going to zero, so we need the idea that x2 does not get too big. To
find x, we minimize the quadratic function in x.

Q(x) = (fx− y)2 + ε2x2 (2)

The second term is called a “damping factor,” because it prevents x from going to ±∞
when f → 0. Set dQ/dx = 0, which gives:

0 = f(fx− y) + ε2x (3)

Equation (3) yields our earlier common-sense guess x = fy/(f2 + ε2). It also leads us to
wider areas of application in which the elements are complex vectors and matrices.

With Fourier transforms, the signal X is a complex number at each frequency ω. There-
fore we generalize equation (2) to:

Q(X̄,X) = (FX − Y)(FX − Y) + ε2X̄X = (X̄F̄ − Ȳ)(FX − Y) + ε2X̄X (4)

To minimize Q, we could use a real-values approach, where we express X = u+ iv in terms
of two real values u and v, and then set ∂Q/∂u = 0 and ∂Q/∂v = 0. The approach we
take, however, is to use complex values, where we set ∂Q/∂X = 0 and ∂Q/∂X̄ = 0. Let us
examine ∂Q/∂X̄:

∂Q(X̄,X)
∂X̄

= F̄ (FX − Y) + ε2X = 0 (5)

The derivative ∂Q/∂X is the complex conjugate of ∂Q/∂X̄. Therefore, if either is zero, the
other is also zero. Thus, we do not need to specify both ∂Q/∂X = 0 and ∂Q/∂X̄ = 0. I
usually set ∂Q/∂X̄ equal to zero. Solving equation (5) for X gives equation (1).

Equation (1) solves Y = XF for X, giving the solution for what is called “the decon-
volution problem with a known wavelet F .” Analogously, we can use Y = XF when the
filter F is unknown, but the input X and output Y are given. Simply interchange X and
F in the derivation and result.

Smoothing the denominator spectrum

Equation (1) gives us one way to divide by zero. Another way is stated by the equation

X(ω) =
F (ω)Y (ω)〈
F (ω)F (ω)

〉 (6)

where the strange notation in the denominator means that the spectrum there should be
smoothed a little. Such smoothing fills in the holes in the spectrum where zero-division is a
danger, filling not with an arbitrary numerical value ε but with an average of nearby spectral
values. Additionally, if the denominator spectrum F (ω)F (ω) is rough, the smoothing creates
a shorter autocorrelation function.

Both divisions, equation (1) and equation (6), irritate us by requiring us to specify a
parameter, but for the latter, the parameter has a clear meaning. In the latter case we

3

smooth a spectrum with a smoothing window of width, say ∆ω which this corresponds
inversely to a time interval over which we smooth. Choosing a numerical value for ε has
not such a simple interpretation.

We jump from simple mathematical theorizing towards a genuine practical application
when I grab some real data, a function of time and space from another textbook. Let us call
this data f(t, x) and its 2-D Fourier transform F (ω, kx). The data and its autocorrelation
are in Figure 1.

The autocorrelation a(t, x) of f(t, x) is the inverse 2-D Fourier Transform of F (ω, kx)F (ω, kx).
Autocorrelations a(x, y) satisfy the symmetry relation a(x, y) = a(−x,−y). Figure 2 shows
only the interesting quadrant of the two independent quadrants. We see the autocorrelation
of a 2-D function has some resemblance to the function itself but differs in important ways.

Instead of messing with two different functions X and Y to divide, let us divide F by
itself. This sounds like 1 = F/F but we will watch what happens when we do the division
carefully avoiding zero division in the ways we usually do.

Figure 2 shows what happens with

1 = F/F ≈ FF

FF + ε2
(7)

and with

1 = F/F ≈ FF〈
FF

〉 (8)

From Figure 2 we notice that both methods of avoiding zero division give similar results.
By playing with the ε and the smoothing width the pictures could be made even more
similar. My preference, however, is the smoothing. It is difficult to make physical sense of
choosing a numerical value for ε. It is much easier to make physical sense of choosing a
smoothing window. The smoothing window is in (ω, kx) space, but Fourier transformation
tells us its effect in (t, x) space.

Imaging

The example of dividing a function by itself (1 = F/F) might not seem to make much
sense, but it is very closely related to estimation often encountered in imaging applications.
It’s not my purpose here to give a lecture on imaging theory, but here is an over-brief
explanation.

Imagine a downgoing wavefield D(ω, x, z). Propagating against irregularities in the
medium D(ω, x, z) creates by scattering an upgoing wavefield U(ω, x, z). Given U and D,
if there is a strong temporal correlation between them at any (x, z) it likely means there is
a reflector nearby that is manufacturing U from D. This reflectivity could be quantified by
U/D. At the Earth’s surface the surface boundary condition says something like U = D or
U = −D. Thus at the surface we have something like F/F . As we go down in the Earth,
the main difference is that U and D get time-shifted in opposite directions, so U and D are
similar but for that time difference. Thus, a study of how we handle F/F is worthwhile.

4

Figure 1: 2-D data (right) and a quadrant of its autocorrelation (left). Notice the longest
nonzero time lag on the data is about 5.5 sec which is the latest nonzero signal on the
autocorrelation.

5

Figure 2: Equation 7 (left) and equation 8 (right). Both ways of dividing by zero give
similar results.

6

Formal path to the low-cut filter

This book defines many geophysical estimation applications. Many applications amount to
fitting two goals. The first goal is a data-fitting goal, the goal that the model should imply
some observed data. The second goal is that the model be not too big nor too wiggly. We
state these goals as two residuals, each of which is ideally zero. A very simple data fitting
goal would be that the model m equals the data d, thus the difference should vanish, say
0 ≈ m− d. A more interesting goal is that the model should match the data especially at
high frequencies but not necessarily at low frequencies.

0 ≈ −iω(m− d) (9)

A danger of this goal is that the model could have a zero-frequency component of infinite
magnitude as well as large amplitudes for low frequencies. To suppress such bad behavior
we need the second goal, a model residual to be minimized. We need a small number ε.
The model goal is:

0 ≈ ε m (10)

To see the consequence of these two goals, we add the squares of the residuals:

Q(m) = ω2(m− d)2 + ε2m2 (11)

and then, we minimize Q(m) by setting its derivative to zero:

0 =
dQ

dm
= 2ω2(m− d) + 2ε2m (12)

or

m =
ω2

ω2 + ε2
d (13)

Let us rename ε to give it physical units of frequency ω0 = ε. Our expression says says m
matches d except for low frequencies |m| < |ω0| where it tends to zero. Now we recognize
we have a low-cut filter with “cut-off frequency” ω0.

The plane-wave destructor

We address the question of shifting signals into best alignment. The most natural approach
might seem to be via cross correlations, which is indeed a good approach when signals are
shifted by large amounts. Here, we assume signals are shifted by small amounts, often less
than a single pixel. We take an approach closely related to differential equations. Consider
this definition of a residual.

0 ≈ residual(t, x) =
(
∂

∂x
+ p

∂

∂t

)
u(t, x) (14)

By taking derivatives we see the residual vanishes when the two-dimensional observation
u(t, x) matches the equation of moving waves u(t− px). The parameter p has units inverse
to velocity, the velocity of propagation.

In practice, u(t, x) might not be a perfect wave but an observed field of many waves
that we might wish to fit to the idea of a single wave of a single p. We seek the parameter p.

7

First, we need a method of discretization that allows the mesh for ∂u/∂t to overlay exactly
∂u/∂x. To this end, I chose to represent the t-derivative by averaging a finite difference at
x with one at x+ ∆x.

∂u

∂t
≈ 1

2

(
u(t+ ∆t, x)− u(t, x)

∆t

)
+

1
2

(
u(t+ ∆t, x+ ∆x)− u(t, x+ ∆x)

∆t

)
(15)

Likewise, there is an analogous expression for the x-derivative with t and x interchanged.
The function u(t, x) lies on a grid, and the differencing operator δx+pδt lies atop it and con-
volves across it. The operator is a 2× 2 convolution filter. We may represent equation (14)
as a matrix operation,

0 ≈ r = Au (16)

where the two-dimensional convolution with the difference operator is denoted A.

Now, let us find the numerical value of p that fits a plane wave u(t−px) to observations
u(t, x). Let x be an abstract vector having components with values ∂u/∂x taken everywhere
on a 2-D mesh in (t, x). Likewise, let t contain ∂u/∂t. Because we want x + pt ≈ 0, we
minimize the quadratic function of p,

Q(p) = (x + pt) · (x + pt) (17)

by setting to zero the derivative by p. We get:

p = − x · t
t · t

(18)

Because data does not always fit the model very well, it may be helpful to have some way
to measure how good the fit is. I suggest:

C2 = 1 − (x + pt) · (x + pt)
x · x

(19)

which, on inserting p = −(x · t)/(t · t), leads to C , where

C =
x · t√

(x · x)(t · t)
(20)

is known as the “normalized correlation.”

To suppress noise, the quadratic functions x ·x, t · t, and x · t were smoothed over time
with a triangle filter.

Subroutine puck2d shows the code that generated Figures 3–5. An example based on
synthetic data is shown in Figures 3 through 5. The synthetic data in Figure 3 mimics a
reflection seismic field profile, including one trace that is slightly delayed as if recorded on
a patch of unconsolidated soil.

Figure 4 shows the residual. The residual is small in the central region of the data;
it is large where the signal is not sampled densely enough, and it is large at the transient
onset of the signal. The residual is rough because of the noise in the signal, because it is
made from derivatives, and the synthetic data was made by nearest-neighbor interpolation.
Notice that the residual is not particularly large for the delayed trace.

8

Figure 3: Input synthetic seismic
data includes a low level of noise.

Figure 4: Residuals, i.e., an evalua-
tion of Ux + pUt.

Figure 5: Output values of p are
shown by the slope of short line seg-
ments.

9

Figure 5 shows the dips. The most significant feature of this figure is the sharp local-
ization of the dips surrounding the delayed trace. Other methods based on “beam stacks”
or Fourier concepts might lead us to conclude that the aperture must be large to resolve a
wide range of angles. Here, we have a narrow aperture (two traces), but the dip can change
rapidly and widely.

Once the stepout p = dt/dx is known between each of the signals, it is a simple matter
to integrate to get the total time shift. A real-life example is shown in Figure 6. In this

Figure 6: A seismic line before and
after flattening.

case the flattening was a function of x only. More interesting (and more complicated) cases
arise when the stepout p = dt/dx is a function of both x and t. The code shown here should
work well in such cases.

A disadvantage, well known to people who routinely work with finite-difference solutions
to partial differential equations, is that for short wavelengths a finite difference operator
is not the same as a differential operator; therefore, the numerical value of p is biased.
This problem can be overcome in the following way. First, estimate the slope p = dt/dx
between each trace. Then, shift the traces to flatten arrivals. Now, there may be a residual
p because of the bias in the initial estimate of p. This process can be iterated until the
data is flattened. Everywhere in a plane we have solved a least squares problem for a single
value p.

MULTIVARIATE LEAST SQUARES

Inside an abstract vector

In engineering uses, a vector has three scalar components that correspond to the three
dimensions of the space in which we live. In least-squares data analysis, a vector is a one-
dimensional array that can contain many different things. Such an array is an “abstract
vector.” For example, in earthquake studies, the vector might contain the time an earth-
quake began, as well as its latitude, longitude, and depth. Alternatively, the abstract vector
might contain as many components as there are seismometers, and each component might
be the arrival time of an earthquake wave. Used in signal analysis, the vector might contain
the values of a signal at successive instants in time or, alternatively, a collection of signals.
These signals might be “multiplexed” (interlaced) or “demultiplexed” (all of each signal
preceding the next). When used in image analysis, the one-dimensional array might con-
tain an image, which is an array of signals. Vectors, including abstract vectors, are usually

10

denoted by boldface letters such as p and s. Like physical vectors, abstract vectors are
orthogonal if a dot product vanishes: p · s = 0. Orthogonal vectors are well known in
physical space; we also encounter orthogonal vectors in abstract vector space.

We consider first a hypothetical application with one data vector d and two fitting
vectors f1 and f2. Each fitting vector is also known as a “regressor.” Our first task is to
approximate the data vector d by a scaled combination of the two regressor vectors. The
scale factors m1 and m2 should be chosen so the model matches the data; i.e.,

d ≈ f1m1 + f2m2 (21)

Notice that we could take the partial derivative of the data in (21) with respect to an
unknown, say m1, and the result is the regressor f1. The partial derivative of all modeled
data di with respect to any particular model parameter mj gives a regressor.

A regressor is a column in the matrix of partial-derivatives, ∂di/∂mj .

The fitting goal (21) is often expressed in the more compact mathematical matrix no-
tation d ≈ Fm, but in our derivation here, we keep track of each component explicitly and
use mathematical matrix notation to summarize the final result. Fitting the observed data
d = dobs to its two theoretical parts f1m1 and f2m2 can be expressed as minimizing the
length of the residual vector r, where:

0 ≈ r = dtheor − dobs (22)
0 ≈ r = f1m1 + f2m2 − d (23)

We use a dot product to construct a sum of squares (also called a “quadratic form”)
of the components of the residual vector:

Q(m1,m2) = r · r (24)
Q(m1,m2) = (f1m1 + f2m2 − d) · (f1m1 + f2m2 − d) (25)

To find the gradient of the quadratic form Q(m1,m2), you might be tempted to expand out
the dot product into all nine terms and then differentiate. It is less cluttered, however, to
remember the product rule, that:

d

dx
r · r =

dr
dx
· r + r · dr

dx
(26)

Thus, the gradient of Q(m1,m2) is defined by its two components:

∂Q
∂m1

= f1 · (f1m1 + f2m2 − d) + (f1m1 + f2m2 − d) · f1
∂Q
∂m2

= f2 · (f1m1 + f2m2 − d) + (f1m1 + f2m2 − d) · f2
(27)

Setting these derivatives to zero and using (f1 · f2) = (f2 · f1) etc., we get

(f1 · d) = (f1 · f1)m1 + (f1 · f2)m2

(f2 · d) = (f2 · f1)m1 + (f2 · f2)m2
(28)

11

We can use these two equations to solve for the two unknowns m1 and m2. Writing this
expression in matrix notation, we have:[

(f1 · d)
(f2 · d)

]
=

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

] [
m1

m2

]
(29)

It is customary to use matrix notation without dot products. For matrix notation we need
some additional definitions. To clarify these definitions, we inspect vectors f1, f2, and d of
three components. Thus,

F = [f1 f2] =

 f11 f12

f21 f22

f31 f32

 (30)

Likewise, the transposed matrix FT is defined by:

FT =

[
f11 f21 f31

f12 f22 f32

]
(31)

Using this matrix FT, there is a simple expression for the gradient calculated in equa-
tion (27). It is used in nearly every example in this book.

g =

[
∂Q
∂m1
∂Q
∂m2

]
=

[
f1 · r
f2 · r

]
=

[
f11 f21 f31

f12 f22 f32

] r1
r2
r3

 = FT r (32)

In words this expression says, the gradient is found by putting the residual into the adjoint
operator g = FTr. Notice, the gradient g has the same number of components as the
unknown solution m, so we can think of the gradient as a ∆m, something we could add to
m getting m + ∆m. Later, we see how much of ∆m we want to add to m. We reach the
best solution when we find the gradient g = 0 vanishes, which happens as equation (32)
says, when the residual is orthogonal to all the fitting functions (all the rows in the matrix
FT, the columns in F, are perpendicular to r).

The matrix in equation (29) contains dot products. Matrix multiplication is an abstract
way of representing the dot products:

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

]
=

[
f11 f21 f31

f12 f22 f32

] f11 f12

f21 f22

f31 f32

 (33)

Thus, equation (29) without dot products is:

[
f11 f21 f31

f12 f22 f32

] d1

d2

d3

 =

[
f11 f21 f31

f12 f22 f32

] f11 f12

f21 f22

f31 f32

[m1

m2

]
(34)

which has the matrix abbreviation:

FT d = (FT F)m (35)

12

Equation (35) is the classic result of least-squares fitting of data to a collection of regressors.
Obviously, the same matrix form applies when there are more than two regressors and each
vector has more than three components. Equation (35) leads to an analytic solution for
m using an inverse matrix. To solve formally for the unknown m, we premultiply by the
inverse matrix (FT F)−1:

m = (FT F)−1 FT d (36)

The central result of least-squares theory is m = (FT F)−1 FT d. We see it every-
where.

Let us examine all the second derivatives of Q(m1,m2) defined by equation (25). Any
multiplying d does not survive the second derivative, therefore, the terms we are left with
are:

Q(m1,m2) = (f1 · f1)m2
1 + 2(f1 · f2)m1m2 + (f2 · f2)m2

2 (37)

After taking the second derivative, we can organize all these terms in a matrix:

∂2Q

∂mi∂mj
=

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

]
(38)

Comparing equation (38) to equation (33) we conclude that FT F is a matrix of second
derivatives. This matrix is also known as the Hessian. It often plays an important role in
small problems.

Larger problems tend to have insufficient computer memory for the Hessian matrix,
because it is the size of model space squared. Where model space is a multidimensional
Earth image, we have a large number of values even before squaring that number. Therefore,
this book rarely works with the Hessian, working instead with gradients.

Rearrange parentheses representing (34).

FT d = FT (Fm) (39)

Equation (35) led to the “analytic” solution (36). In a later section on conjugate directions,
we see that equation (39) expresses better than equation (36) the philosophy of iterative
methods.

Notice how equation (39) invites us to cancel the matrix FT from each side. We cannot
do that of course, because FT is not a number, nor is it a square matrix with an inverse.
If you really want to cancel the matrix FT, you may, but the equation is then only an
approximation that restates our original goal (21):

d ≈ Fm (40)

Speedy problem solvers might ignore the mathematics covering the previous page, study
their application until they are able to write the statement of goals (40) = (21), premultiply
by FT, replace ≈ by =, getting (35), and take (35) to a simultaneous equation-solving
program to get m.

13

What I call “fitting goals” are called “regressions” by statisticians. In common
language the word regression means to “trend toward a more primitive perfect state,” which
vaguely resembles reducing the size of (energy in) the residual r = Fm− d. Formally, the
fitting is often written as:

min
m

‖Fm− d‖ (41)

The notation with two pairs of vertical lines looks like double absolute value, but we can
understand it as a reminder to square and sum all the components. This formal notation
is more explicit about what is constant and what is variable during the fitting.

Normal equations

An important concept is that when energy is minimum, the residual is orthogonal to the
fitting functions. The fitting functions are the column vectors f1, f2, and f3. Let us verify
only that the dot product r · f2 vanishes; to do so, we show that those two vectors are
orthogonal. Energy minimum is found by:

0 =
∂

∂m2
r · r = 2 r · ∂r

∂m2
= 2 r · f2 (42)

(To compute the derivative, refer to equation (23).) Equation (42) shows that the residual
is orthogonal to a fitting function. The fitting functions are the column vectors in the fitting
matrix.

The basic least-squares equations are often called the “normal” equations. The word
“normal” means perpendicular. We can rewrite equation (39) to emphasize the perpen-
dicularity. Bring both terms to the right, and recall the definition of the residual r from
equation (23):

0 = FT (Fm− d) (43)
0 = FT r (44)

Equation (44) says that the residual vector r is perpendicular to each row in the FT matrix.
These rows are the fitting functions. Therefore, the residual, after it has been minimized,
is perpendicular to all the fitting functions.

Differentiation by a complex vector

Complex numbers frequently arise in physical applications, particularly those with Fourier
series. Let us extend the multivariable least-squares theory to the use of complex-valued
unknowns m. First, recall how complex numbers were handled with single-variable least
squares; i.e., as in the discussion leading up to equation (5). Use an asterisk, such as
mT, to denote the complex conjugate of the transposed vector m. Now, write the positive
quadratic form as:

Q(mT,m) = (Fm− d)T (Fm− d) = (mT FT − dT)(Fm− d) (45)

Recall from equation (4), where we minimized a quadratic form Q(X̄,X) by setting
to zero, both ∂Q/∂X̄ and ∂Q/∂X. We noted that only one of ∂Q/∂X̄ and ∂Q/∂X is

14

necessarily zero, because these terms are conjugates of each other. Now, take the derivative
of Q with respect to the (possibly complex, row) vector mT. Notice that ∂Q/∂mT is the
complex conjugate transpose of ∂Q/∂m. Thus, setting one to zero also sets the other to
zero. Setting ∂Q/∂mT = 0 gives the normal equations:

0 =
∂Q

∂mT
= FT (Fm− d) (46)

The result is merely the complex form of our earlier result (43). Therefore, differentiating
by a complex vector is an abstract concept, but it gives the same set of equations as
differentiating by each scalar component, and it saves much clutter.

From the frequency domain to the time domain

Where data fitting uses the notation m → d, linear algebra and signal analysis often use
the notation x→ y. Equation (4) is a frequency-domain quadratic form that we minimized
by varying a single parameter, a Fourier coefficient. Now, we look at the same problem in
the time domain. We see that the time domain offers flexibility with boundary conditions,
constraints, and weighting functions. The notation is that a filter ft has input xt and
output yt. In Fourier space, it is expressed Y = XF . There are two applications to look
at, unknown filter F and unknown input X.

Unknown filter

When inputs and outputs are given, the problem of finding an unknown filter appears to be
overdetermined, so we write y ≈ Xf where the matrix X is a matrix of downshifted columns
like (??). Thus, the quadratic form to be minimized is a restatement of equation (45) with
filter definitions:

Q(fT, f) = (Xf − y)T (Xf − y) (47)

The solution f is found just as we found (46), and it is the set of simultaneous equations
0 = XT (Xf − y).

Unknown input: deconvolution with a known filter

For solving the unknown-input problem, we put the known filter ft in a matrix of down-
shifted columns F. Our statement of wishes is now to find xt so that y ≈ Fx. We can
expect to have trouble finding unknown inputs xt when we are dealing with certain kinds
of filters, such as bandpass filters. If the output is zero in a frequency band, we are never
able to find the input in that band and need to prevent xt from diverging there. We prevent
divergence by the statement that we wish 0 ≈ εx, where ε is a parameter that is small with
exact size chosen by experimentation. Putting both wishes into a single, partitioned matrix
equation gives: [

0
0

]
≈

[
r1

r2

]
=

[
F
ε I

]
x −

[
y
0

]
(48)

15

To minimize the residuals r1 and r2, we can minimize the scalar rT r = rT
1 r1 + rT

2 r2.
Expanding:

Q(xT,x) = (Fx− y)T (Fx− y) + ε2xT x

= (xT FT − yT)(Fx− y) + ε2xT x (49)

We solved this minimization in the frequency domain (beginning from equation (4)).

Formally the solution is found just as with equation (46), but this solution looks un-
appealing in practice because there are so many unknowns and the problem can be solved
much more quickly in the Fourier domain. To motivate ourselves to solve this problem
in the time domain, we need either to find an approximate solution method that is much
faster, or find ourselves with an application that needs boundaries, or needs time-variable
weighting functions.

KRYLOV SUBSPACE ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the number
of unknowns. There are three regimes for solution; which regime is applicable depends on
the number of unknowns in m. For m three or less, we use analytical methods. We also
sometimes use analytical methods on matrices of size 4 × 4 if the matrix contains many
zeros. My 1988 desktop workstation solved a 100×100 system in a minute. Ten years later,
it would do a 600 × 600 system in roughly a minute. A nearby more powerful computer
would do 1,000 × 1,000 in a minute. Because the computing effort increases with the third
power of the size, and because 43 = 64 ≈ 60, an hour’s work solves a four times larger
matrix, namely 4,000 × 4,000 on the more powerful machine. For significantly larger values
of m, exact numerical methods must be abandoned and iterative methods must be used.

The compute time for a rectangular matrix is slightly more pessimistic. It is the product
of the number of data points n times the number of model points squared m2 which is also
the cost of computing the matrix FT F from F. Because the number of data points generally
exceeds the number of model points n > m by a substantial factor (to allow averaging of
noises), it leaves us with significantly fewer than 4,000 points in model space.

A square image packed into a 4,096-point vector is a 64×64 array. The computer power
for linear algebra to give us solutions that fit in a k × k image is thus proportional to k6,
which means that even though computer power grows rapidly, imaging resolution using
“exact numerical methods” hardly grows at all from our 64× 64 current practical limit.

The retina in our eyes captures an image of size roughly 1,000 × 1,000 which is a
lot bigger than 64 × 64. Life offers us many occasions in which final images exceed the
4,000 points of a 64 × 64 array. To make linear algebra (and inverse theory) relevant to
such applications, we investigate special techniques. A numerical technique known as the
“conjugate-direction method” works well for all values of m and is our subject here.
As with most simultaneous equation solvers, an exact answer (assuming exact arithmetic)
is attained in a finite number of steps. And, if n and m are too large to allow enough
iterations, the iterative methods can be interrupted at any stage, the partial result often
proving useful. Whether or not a partial result actually is useful is the subject of much
research; naturally, the results vary from one application to the next.

16

Sign convention

On the last day of the survey, a storm blew up, the sea got rough, and the receivers drifted
further downwind. The data recorded that day had a larger than usual difference from that
predicted by the final model. We could call (d− Fm) the experimental error. (Here, d
is data, m is model parameters, and F is their linear relation.)

The alternate view is that our theory was too simple. It lacked model parameters for the
waves and the drifting cables. Because of this model oversimplification, we had a modeling
error of the opposite polarity (Fm− d).

Strong experimentalists prefer to think of the error as experimental error, something
for them to work out. Likewise, a strong analyst likes to think of the error as a theoretical
problem. (Weaker investigators might be inclined to take the opposite view.)

Opposite to common practice, I define the sign convention for the error (or residual)
as (Fm − d). Here is why. Minus signs are a source of confusion and errors. Putting the
minus sign on the field data limits it to one location, while putting it in model space would
spread it into as many parts as model space has parts.

Beginners often feel disappointment when the data does not fit the model very well.
They see it as a defect in the data instead of an opportunity to discover what our data
contains that our theory does not.

Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector given by:

residual = transform model space − data space (50)
r

=

F

x

−

d

(51)

A contour plot is based on an altitude function of space. The altitude is the dot
product r ·r. By finding the lowest altitude, we are driving the residual vector r as close as
we can to zero. If the residual vector r reaches zero, then we have solved the simultaneous
equations d = Fx. In a two-dimensional world, the vector x has two components, (x1, x2).
A contour is a curve of constant r · r in (x1, x2)-space. These contours have a statistical
interpretation as contours of uncertainty in (x1, x2), with measurement errors in d.

Let us see how a random search-direction can be used to reduce the residual 0 ≈ r =
Fx−d. Let ∆x be an abstract vector with the same number of components as the solution
x, and let ∆x contain arbitrary or random numbers. We add an unknown quantity α of
vector ∆x to the vector x, and thereby create xnew:

xnew = x + α∆x (52)

17

The new x gives a new residual:

rnew = F xnew − d (53)
rnew = F(x + α∆x)− d (54)

rnew = r + α∆r = (Fx− d) + αF∆x (55)

which defines ∆r = F∆x.

Next, we adjust α to minimize the dot product: rnew · rnew

(r + α∆r) · (r + α∆r) = r · r + 2α(r ·∆r) + α2∆r ·∆r (56)

Set to zero its derivative with respect to α:

0 = 2r ·∆r + 2α∆r ·∆r (57)

which says that the new residual rnew = r + α∆r is perpendicular to the “fitting function”
∆r. Solving gives the required value of α.

α = − (r ·∆r)
(∆r ·∆r)

(58)

A “computation template” for the method of random directions is:

r ←− Fx− d
iterate {

∆x ←− random numbers
∆r ←− F ∆x
α ←− −(r ·∆r)/(∆r ·∆r)
x ←− x + α∆x
r ←− r + α∆r
}

A nice thing about the method of random directions is that you do not need to know the
adjoint operator FT.

In practice, random directions are rarely used. It is more common to use the gradient
direction than a random direction. Notice that a vector of the size of ∆x is:

g = FT r (59)

Recall this vector can be found by taking the gradient of the size of the residuals:

∂

∂xT
r · r =

∂

∂xT
(xT FT − dT) (F x − d) = FT r (60)

Choosing ∆x to be the gradient vector ∆x = g = FT r is called “the method of steepest
descent.”

Starting from a model x = m (which may be zero), the following is a template of
pseudocode for minimizing the residual 0 ≈ r = Fx− d by the steepest-descent method:

18

r ←− Fx− d
iterate {

∆x ←− FT r
∆r ←− F ∆x
α ←− −(r ·∆r)/(∆r ·∆r)
x ←− x + α∆x
r ←− r + α∆r
}

Good science and engineering is finding something unexpected. Look for the unexpected
both in data space and in model space. In data space, you look at the residual r. In model
space, you look at the residual projected there FT r. What does it mean? It is simply ∆m,
the changes you need to make to your model. It means more in later chapters, where the
operator F is a column vector of operators that are fighting with one another to grab the
data.

Why steepest descent is so slow

Before we can understand why the conjugate-direction method is so fast, we need to see
why the steepest-descent method is so slow. The process of selecting α is called “line
search,” but for a linear problem like the one we have chosen here, we hardly recognize
choosing α as searching a line. A more graphic understanding of the whole process is
possible from considering a two-dimensional space, where the vector of unknowns x has
just two components, x1 and x2. Then, the size of the residual vector r · r can be displayed
with a contour plot in the plane of (x1, x2). Figure 7 shows a contour plot of the penalty
function of (x1, x2) = (m1,m2). The gradient is perpendicular to the contours. Contours
and gradients are curved lines. When we use the steepest-descent method, we start at a
point and compute the gradient direction at that point. Then, we begin a straight-line
descent in that direction. The gradient direction curves away from our direction of travel,
but we continue on our straight line until we have stopped descending and are about to
ascend. There we stop, compute another gradient vector, turn in that direction, and descend
along a new straight line. The process repeats until we get to the bottom or until we get
tired.

What could be wrong with such a direct strategy? The difficulty is at the stopping
locations. These locations occur where the descent direction becomes parallel to the contour
lines. (There the path becomes level.) So, after each stop, we turn 90◦ from parallel to
perpendicular to the local contour line for the next descent. What if the final goal is at
a 45◦ angle to our path? A 45◦ turn cannot be made. Instead of moving like a rain drop
down the centerline of a rain gutter, we move along a fine-toothed zigzag path, crossing and
recrossing the centerline. The gentler the slope of the rain gutter, the finer the teeth on the
zigzag path.

Null space and iterative methods

In applications where we fit d ≈ Fx, there might exist a vector (or a family of vectors)
defined by the condition 0 = Fxnull. This family is called a null space. For example, if the

19

Figure 7: Route of steepest descent
(black) and route of conjugate direc-
tion (light grey or red).

Search paths

m1

m
2

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

operator F is a time derivative, then the null space is the constant function; if the operator
is a second derivative, then the null space has two components, a constant function and a
linear function, or combinations of both. The null space is a family of model components
that have no effect on the data.

When we use the steepest-descent method, we iteratively find solutions by this updating:

xi+1 = xi + α∆x (61)
xi+1 = xi + αFT r (62)
xi+1 = xi + αFT (Fx− d) (63)

After we have iterated to convergence, the gradient ∆x = FT r vanishes. Adding any xnull

to x does not change the residual r = Fx−d. Because r is unchanged, ∆x = FT r remains
zero and xi+1 = xi. Thus, we conclude that any null space in the initial guess x0 remains
there unaffected by the gradient-descent process. So, in the presense of null space, the
answer we get from an iterative method depends on the starting guess. Oops! The analytic
solution does not do any better. It needs to deal with a singular matrix. Existence of a null
space destroys the uniqueness of any resulting model.

Linear algebra theory enables us to dig up the entire null space should we so desire. On
the other hand, the computer demands might be vast. Even the memory for holding the
many x vectors could be prohibitive. A much simpler and more practical goal is to find
out if the null space has any members, and if so, to view some members. To try to see a
member of the null space, we take two starting guesses, and we run our iterative solver for
each. If the two solutions, x1 and x2, are the same, there is no null space. If the solutions
differ, the difference is a member of the null space. Let us see why: Suppose after iterating
to minimum residual we find:

r1 = Fx1 − d (64)
r2 = Fx2 − d (65)

We know that the residual squared is a convex quadratic function of the unknown x. Math-
ematically that means the minimum value is unique, so r1 = r2. Subtracting, we find

20

0 = r1− r2 = F(x1−x2) proving that x1−x2 is a model in the null space. Adding x1−x2

to any to any model x does not change the modeled data.

A practical way to learn about the existence of null spaces and see samples is to try
gradient-descent methods beginning from various different starting guesses.

“Did I fail to run my iterative solver long enough?” is a question you might have. If two
residuals from two starting solutions are not equal, r1 6= r2, then you should be running
your solver through more iterations.

If two different starting solutions produce two different residuals, then you did not run
your solver through enough iterations.

The magical property of the conjugate direction method

In the conjugate-direction method, not a line, but rather a plane, is searched. A plane
is made from an arbitrary linear combination of two vectors. One vector is chosen to be the
gradient vector, say g. The other vector is chosen to be the previous descent step vector, say
s = xj − xj−1. Instead of αg, we need a linear combination, say αg + βs. For minimizing
quadratic functions the plane search requires only the solution of a two-by-two set of
linear equations for α and β.

The conjugate-direction (CD) method described in this book has a magical property
shared by the more famous conjugate-gradient method. This magical property is not proven
in this book, but it may be found in many sources. Although both methods are iterative
methods, both converge on the exact answer (assuming perfect numerical precision) in a
fixed number of steps. That number is the number of components in model space x.

Where we benefit from iterative methods is where convergence is more rapid than the
theoretical requirement. Whether or not that happens, depends on the problem at hand.
Reflection seismology has many problems so massive they are said to be solved simply by
one application of the adjoint operator. The idea that such solutions might be improved by
a small number of iterations is very appealing.

Conjugate-direction theory for programmers

Fourier-transformed variables are often capitalized. This convention is helpful here, so in
this subsection only, we capitalize vectors transformed by the F matrix. As everywhere,
a matrix, such as F, is printed in boldface type but in this subsection, vectors are not
printed in boldface. Thus, we define the solution, the solution step (from one iteration to
the next), and the gradient by:

X = F x modeled data = F model (66)
Sj = F sj solution change (67)
Gj = F gj ∆r = F∆m (68)

21

A linear combination in solution space, say s + g, corresponds to S + G in the conjugate
space, the data space, because S + G = Fs + Fg = F(s + g). According to equation (51),
the residual is the modeled data minus the observed data.

R = Fx − D = X − D (69)

The solution x is obtained by a succession of steps sj , say:

x = s1 + s2 + s3 + · · · (70)

The last stage of each iteration is to update the solution and the residual:

solution update : x ← x + s (71)
residual update : R ← R + S (72)

The gradient vector g is a vector with the same number of components as the solution
vector x. A vector with this number of components is:

g = FT R = gradient (73)
G = F g = conjugate gradient = ∆r (74)

The gradient g in the transformed space is G, also known as the conjugate gradient.

What is our solution update ∆x = s? It is some unknown amount α of the gradient g
plus another unknown amount β of the previous step s. Likewise in residual space.

∆x = αg + βs model space (75)
∆r = αG + βS data space (76)

The minimization (56) is now generalized to scan not only in a line with α, but simul-
taneously another line with β. The combination of the two lines is a plane. We now set out
to find the location in this plane that minimizes the quadratic Q.

Q(α, β) = (R+ αG+ βS) · (R+ αG+ βS) (77)

The minimum is found at ∂Q/∂α = 0 and ∂Q/∂β = 0, namely,

0 = G · (R+ αG+ βS) (78)
0 = S · (R+ αG+ βS) (79)

−
[

(G ·R)
(S ·R)

]
=

[
(G ·G) (S ·G)
(G · S) (S · S)

] [
α
β

]
(80)

Equation (81) is a set of two equations for α and β. Recall the inverse of a 2 × 2 matrix,
equation (111) and get:[

α
β

]
=

−1
(G ·G)(S · S)− (G · S)2

[
(S · S) −(S ·G)
−(G · S) (G ·G)

] [
(G ·R)
(S ·R)

]
(81)

The many applications in this book all need to find α and β with (81), and then update
the solution with (71) and update the residual with (72). Thus, we package these activities in
a subroutine named cgstep(). To use that subroutine, we have a computation template
with repetitive work done by subroutine cgstep(). This template (or pseudocode) for
minimizing the residual 0 ≈ r = Fx− d by the conjugate-direction method is:

22

r ←− Fx− d
iterate {

∆x ←− FT r
∆r ←− F ∆x
(x, r) ←− cgstep(x, r,∆x,∆r)
}

where the subroutine cgstep() remembers the previous iteration and works out the step
size and adds in the proper proportion of the ∆x of the previous step.

Routine for one step of conjugate-direction descent

The conjugate vectors G and S in the program are denoted by gg and ss. The inner part
of the conjugate-direction task is in function cgstep().

Observe the cgstep() function has a logical parameter called forget. This parameter
does not need to be input. In the normal course of things, forget is true on the first
iteration and false on subsequent iterations. On the first iteration there is no previous
step, so the conjugate direction method is reduced to the steepest descent method. At any
iteration, however, you have the option to set forget=true, which amounts to restarting
the calculation from the current location, something we rarely find reason to do.

A basic solver program

There are many different methods for iterative least-square estimation some of which are
discussed later in this book. The conjugate-gradient (CG) family (including the first order
conjugate-direction method previously described) share the property that theoretically they
achieve the solution in n iterations, where n is the number of unknowns. The various
CG methods differ in their numerical errors, memory required, adaptability to nonlinear
optimization, and their requirements on accuracy of the adjoint. What we do in this section
is to show you the generic interface.

None of us is an expert in both geophysics and in optimization theory (OT), yet we need
to handle both. We would like to have each group write its own code with a relatively easy
interface. The problem is that the OT codes must invoke the physical operators yet the
OT codes should not need to deal with all the data and parameters needed by the physical
operators.

In other words, if a practitioner decides to swap one solver for another, the only thing
needed is the name of the new solver.

The operator entrance is for the geophysicist, who formulates the estimation application.
The solver entrance is for the specialist in numerical algebra, who designs a new optimization
method. The C programming language allows us to achieve this design goal by means of
generic function interfaces.

A generic solver subroutine is tinysolver. It is simplified substantially from the library
version, which has a much longer list of optional arguments. (The forget parameter is not
needed by the solvers we discuss first.)

23

api/c/cgstep.c

51 i f (f o r g e t) {
52 for (i = 0 ; i < nx ; i++) S [i] = 0 . ;
53 for (i = 0 ; i < ny ; i++) Ss [i] = 0 . ;
54 beta = 0 . 0 ;
55 a l f a = c b l a s d s d o t (ny , gg , 1 , gg , 1) ;
56 /∗ So lve G . (R + G∗ a l f a) = 0 ∗/
57 i f (a l f a <= 0 .) return ;
58 a l f a = − c b l a s d s d o t (ny , gg , 1 , rr , 1) / a l f a ;
59 } else {
60 /∗ search p lane by s o l v i n g 2−by−2
61 G . (R + G∗ a l f a + S∗ be ta) = 0
62 S . (R + G∗ a l f a + S∗ be ta) = 0 ∗/
63 gdg = c b l a s d s d o t (ny , gg , 1 , gg , 1) ;
64 sds = c b l a s d s d o t (ny , Ss , 1 , Ss , 1) ;
65 gds = c b l a s d s d o t (ny , gg , 1 , Ss , 1) ;
66 i f (gdg == 0 . | | sds == 0 .) return ;
67 determ = 1.0 − (gds/gdg)∗ (gds/ sds) ;
68 i f (determ > EPSILON) determ ∗= gdg ∗ sds ;
69 else determ = gdg ∗ sds ∗ EPSILON;
70 gdr = − c b l a s d s d o t (ny , gg , 1 , rr , 1) ;
71 sdr = − c b l a s d s d o t (ny , Ss , 1 , rr , 1) ;
72 a l f a = (sds ∗ gdr − gds ∗ sdr) / determ ;
73 beta = (−gds ∗ gdr + gdg ∗ sdr) / determ ;
74 }
75 c b l a s s s c a l (nx , beta , S , 1) ;
76 cb la s saxpy (nx , a l f a , g , 1 , S , 1) ;
77

78 c b l a s s s c a l (ny , beta , Ss , 1) ;
79 cb la s saxpy (ny , a l f a , gg , 1 , Ss , 1) ;
80

81 for (i = 0 ; i < nx ; i++) {
82 x [i] += S [i] ;
83 }
84 for (i = 0 ; i < ny ; i++) {
85 r r [i] += Ss [i] ;
86 }

24

api/c/tinysolver.c

23 void s f t i n y s o l v e r (s f o p e r a t o r Fop /∗ l i n e a r opera tor ∗/ ,
24 s f s o l v e r s t e p s t epper /∗ s t e p p i n g f u n c t i o n ∗/ ,
25 int nm /∗ s i z e o f model ∗/ ,
26 int nd /∗ s i z e o f data ∗/ ,
27 f loat ∗ m /∗ es t imated model ∗/ ,
28 const f loat ∗ m0 /∗ s t a r t i n g model ∗/ ,
29 const f loat ∗ d /∗ data ∗/ ,
30 int n i t e r /∗ i t e r a t i o n s ∗/)
31 /∗< Generic l i n e a r s o l v e r . S o l v e s oper{x} =˜ dat >∗/
32 {
33 int i , i t e r ;
34 f loat ∗g , ∗ rr , ∗gg ;
35

36 g = s f f l o a t a l l o c (nm) ;
37 r r = s f f l o a t a l l o c (nd) ;
38 gg = s f f l o a t a l l o c (nd) ;
39

40 for (i =0; i < nd ; i++) r r [i] = − d [i] ;
41 i f (NULL==m0) {
42 for (i =0; i < nm; i++) m[i] = 0 . 0 ;
43 } else {
44 for (i =0; i < nm; i++) m[i] = m0[i] ;
45 Fop (f a l s e , true , nm, nd , m, r r) ;
46 }
47

48 for (i t e r =0; i t e r < n i t e r ; i t e r ++) {
49 Fop (true , f a l s e , nm, nd , g , r r) ;
50 Fop (f a l s e , f a l s e , nm, nd , g , gg) ;
51

52 s t epper (f a l s e , nm, nd , m, g , rr , gg) ;
53 }
54

55 f r e e (g) ;
56 f r e e (r r) ;
57 f r e e (gg) ;
58 }

25

The two most important arguments in tinysolver() are the operator function Fop,
which is defined by the interface from Chapter ??, and the solver function stepper, which
implements one step of an iterative estimation. For example, a practitioner who choses to
use our new cgstep() on page 23 for iterative solving the operator matmult on page ??
would write the call

tinysolver (matmult lop, cgstep, ...

The other required parameters to tinysolver() are dat (the data we want to fit), x
(the model we want to estimate), and niter (the maximum number of iterations). There
are also a couple of optional arguments. For example, x0 is the starting guess for the model.
If this parameter is omitted, the model is initialized to zero. To output the final residual
vector, we include a parameter called res, which is optional as well. We will watch how the
list of optional parameters to the generic solver routine grows as we attack more and more
complex applications in later chapters.

Fitting success and solver success

Every time we run a data modeling program, we have access to two publishable numbers
1 − |r|/|d| and 1 − |FT r|/|FT d|. The first says how well the model fits the data. The
second says how well we did the job of finding out.

Define the residual r = Fm−d and the “size” of any vector, such as the data vector, as
|d| =

√
d · d. The number 1−|r|/|d| is called the “success at fitting data.” (Any data-space

weighting function should have been incorporated in both F and d.)

While the data fitting success is of interest to everyone, the second number 1−|FT r|/|FT d|
is of interest in QA (quality analysis). In giant problems, especially those arising in seis-
mology, running iterations to completion is impractical. A question always of interest is
whether or not enough iterations have been run. This number gives us guidance to where
more effort could be worthwhile.

0 ≤ Success ≤ 1
Fitting success: 1− |r|/|d|
Numerical success: 1− |FT r|/|FT d|

Roundoff

Surprisingly, as a matter of practice, the simple conjugate-direction method defined in this
book is more reliable than the conjugate-gradient method defined in the formal professional
literature. I know this sounds unlikely, but I can tell you why.

In large applications, numerical roundoff can be a problem. Calculations need to be
done in higher precision. The conjugate gradient method depends on you to supply an
operator with the adjoint correctly computed. Any roundoff in computing the operator
should somehow be matched by the roundoff in the adjoint. But that is unrealistic. Thus,
optimization may diverge while theoretically converging. The conjugate direction method
does not mind the roundoff; it simply takes longer to converge.

26

Let us see an example of a situation in which roundoff becomes a problem. Suppose we
add 100 million 1.0s. You expect the sum to be 100 million. I got a sum of 16.7 million.
Why? After the sum gets to 16.7 million, adding a one to it adds nothing. The extra 1.0
disappears in single precision roundoff.

real function one(sum); one=1.; return; end
integer i; real sum
do i=1, 100000000

sum = sum + one(sum)
write (0,*) sum; stop; end

1.6777216E+07

The previous code must be a little more complicated than I had hoped because modern
compilers are so clever. When told to add all the values in a vector the compiler wisely
adds the numbers in groups, and then adds the groups. Thus, I had to hide the fact I was
adding ones by getting those ones from a subroutine that seems to depend upon the sum
(but really does not).

Test case: solving some simultaneous equations

Now we assemble a module cgtest for solving simultaneous equations. Starting with the
conjugate-direction module cgstep on page 23 we insert the module matmult on page ??
as the linear operator.

user/pwd/cgtest.c

23 void c g t e s t (int nx , int ny , f loat ∗x ,
24 const f loat ∗yy , f loat ∗∗ f f f , int n i t e r)
25 /∗< t e s t i n g con juga te g r a d i e n t s wi th matrix m u l t i p l i c a t i o n >∗/
26 {
27 matmult in i t (f f f) ;
28 s f t i n y s o l v e r (matmult lop , s f c g s t e p ,
29 nx , ny , x , NULL, yy , n i t e r) ;
30 s f c g s t e p c l o s e () ;
31 }

The following shows the solution to a 5× 4 set of simultaneous equations. Observe that
the “exact” solution is obtained in the last step. Because the data and answers are integers,
it is quick to check the result manually.

d transpose

3.00 3.00 5.00 7.00 9.00

F transpose

1.00 1.00 1.00 1.00 1.00

1.00 2.00 3.00 4.00 5.00

1.00 0.00 1.00 0.00 1.00

27

0.00 0.00 0.00 1.00 1.00

for iter = 0, 4

x 0.43457383 1.56124675 0.27362058 0.25752524

res -0.73055887 0.55706739 0.39193487 -0.06291389 -0.22804642

x 0.51313990 1.38677299 0.87905121 0.56870615

res -0.22103602 0.28668585 0.55251014 -0.37106210 -0.10523783

x 0.39144871 1.24044561 1.08974111 1.46199656

res -0.27836466 -0.12766013 0.20252672 -0.18477242 0.14541438

x 1.00001287 1.00004792 1.00000811 2.00000739

res 0.00006878 0.00010860 0.00016473 0.00021179 0.00026788

x 1.00000024 0.99999994 0.99999994 2.00000024

res -0.00000001 -0.00000001 0.00000001 0.00000002 -0.00000001

INVERSE NMO STACK

To illustrate an example of solving a huge set of simultaneous equations without ever writing
down the matrix of coefficients, we consider how back projection can be upgraded toward
inversion in the application called moveout and stack.

Figure 8: Top is a model trace m.
Next, are the synthetic data traces,
d = Fm. Then, labeled niter=0
is the stack, a result of processing
by adjoint modeling. Increasing val-
ues of niter show m as a function
of iteration count in the fitting goal
d ≈ Fm. (Carlos Cunha-Filho)

The seismograms at the bottom of Figure 8 show the first four iterations of conjugate-
direction inversion. You see the original rectangle-shaped waveform returning as the it-
erations proceed. Notice also on the stack that the early and late events have unequal
amplitudes, but after enough iterations match the original model. Mathematically, we can
denote the top trace as the model m, the synthetic data signals as d = Fm, and the stack
as FT d. The conjugate-gradient algorithm optimizes the fitting goal d ≈ Fx by variation
of x, and the figure shows x converging to m. Because there are 256 unknowns in m, it
is gratifying to see good convergence occurring after the first four iterations. The fitting
is done by module invstack, which is just like cgtest on the preceding page except that
the matrix-multiplication operator matmult on page ?? has been replaced by imospray.
Studying the program, you can deduce that, except for a scale factor, the output at niter=0
is identical to the stack MTd. All the signals in Figure 8 are intrinsically the same scale.

This simple inversion is inexpensive. Has anything been gained over conventional stack?

28

user/gee/invstack.c

24 void i nv s tack (int nt , f loat ∗model , int nx , const f loat ∗ gather ,
25 f loat t0 , f loat x0 ,
26 f loat dt , f loat dx , f loat slow , int n i t e r)
27 /∗< NMO s t a c k by i n v e r s e o f forward modeling ∗/
28 {
29 i m o s p r a y i n i t (slow , x0 , dx , t0 , dt , nt , nx) ;
30 s f t i n y s o l v e r (imospray lop , s f c g s t e p ,
31 nt , nt∗nx , model , NULL, gather , n i t e r) ;
32 s f c g s t e p c l o s e () ;
33 imospray c l o s e () ; /∗ garbage c o l l e c t i o n ∗/
34 }

First, though we used nearest-neighbor interpolation, we managed to preserve the spectrum
of the input, apparently all the way to the Nyquist frequency. Second, we preserved the
true amplitude scale without ever bothering to think about (1) dividing by the number of
contributing traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for
inversion.

FLATTENING 3-D SEISMIC DATA

Here is an expression that on first sight seems to say nothing:

∇τ =

∂τ
∂x

∂τ
∂y

 (82)

Equation (82) looks like a tautology, a restatement of basic mathematical notation. But it
is a tautology only if τ(x, y) is known and the derivatives come from it. When τ(x, y) is not
known but the partial derivatives are observed, then, we have two measurements at each
(x, y) location for the one unknown τ at that location. In Figure ??, we have seen how to
flatten 2-D seismic data. The 3-D process (x, y, τ) is much more interesting because of the
possibility encountering a vector field that cannot be derived from a scalar field.

The easy case is when you can move around the (x, y) plane adding up τ by steps of
dτ/dx and dτ/dy and find upon returning to your starting location that the total time
change τ is zero. When dτ/dx and dτ/dy are derived from noisy data, such sums around
a path often are not zero. Old time seismologists would say, “The survey lines don’t tie.”
Mathematically, it is like an electric field vector that may be derived from a potential field
unless the loop encloses a changing magnetic field.

We would like a solution for τ that gives the best fit of all the data (the stepouts dτ/dx
and dτ/dy) in a volume. Given a volume of data d(t, x, y), we seek the best τ(x, y) such
that w(t, x, y) = d(t− τ(x, y), x, y) is flattened. Let us get it.

29

We write a regression, a residual r that we minimize to find a best fitting τ(x, y) or maybe
τ(x, y, t). Let d be the measurements in the vector in equation (82), the measurements
throughout the (t, x, y)-volume. Expressed as a regression, equation (82) becomes:

0 ≈ r = ∇τ − d (83)

Figure 9 shows slices through a cube of seismic data. A paper book is inadequate to display
all the images required to compare before and after (one image of output is blended over
multiple images of input), therefore, we move on to a radar application of much the same
idea, but in 2-D instead of 3-D.

Figure 9: [Jesse Lomask] Chevron data cube from the Gulf of Mexico. Shown are three
planes within the cube. A salt dome (lower right corner in the top plane) has pushed
upward, dragging bedding planes (seen in the bottom two orthogonal planes) along with it.

Let us see how the coming 3-D illustrations were created. First we need code for vector
gradient with its adjoint, negative vector divergence. Here it is: In a kind of magic, all we
need to fit our regression (82) is to pass the igrad2 module to the Krylov subspace solver,
simple solver using cgstep, but first we need to compute d by calculating dt/dx and dt/dy
between all the mesh points.

do iy=1,ny { # Calculate x-direction dips: px
call puck2d(dat(:,:,iy),coh_x,px,res_x,boxsz,nt,nx)

}
do ix=1,nx { # Calculate y-direction dips: py

call puck2d(dat(:,ix,:),coh_y,py,res_y,boxsz,nt,ny)
}

do it=1,nt { # Integrate dips: tau
call dipinteg(px(it,:,:),py(it,:,:),tau,niter,verb,nx,ny)

}

30

api/c/igrad2.c

48 for (i 2 =0; i 2 < n2−1; i 2++) {
49 for (i 1 =0; i 1 < n1−1; i 1++) {
50 i = i 1+i 2 ∗n1 ;
51 i f (adj) {
52 p [i +1] += r [i] ;
53 p [i+n1] += r [i+n12] ;
54 p [i] −= (r [i] + r [i+n12]) ;
55 } else {
56 r [i] += (p [i +1] − p [i]) ;
57 r [i+n12] += (p [i+n1] − p [i]) ;
58 }
59 }
60 }

The code says first to initialize the gradient operator. Convert the 2-D plane of dt/dx to a
vector. Likewise dt/dy. Concatenate these two vectors into a single column vector d like in
equation (82). Tell the simple solver to make its steps with to use cgstep with the linear
operator igrad2.

Gulf of Mexico Salt Piercement Example (Jesse Lomask)

Figure 9 shows a 3-D seismic data cube from the Gulf of Mexico provided by Chevron. A
volume of data cannot be displayed on the page of a book. The display here consists of
three slices from the volume. Top is a (t0, x, y) slice, also called a “time slice.” Beneath
it is a (t, x, y0) slice; aside that is a (t, x0, y) slice, depth slices in orthogonal directions.
Intersections of the slices within the cube are shown by the heavy black lines on the faces of
the cube. The circle in the lower right corner of the top slice is an eruption of salt (which,
like ice, under high pressure will flow like a liquid). Inside the salt there are no reflections
so the data should be ignored there. Outside the salt we see layers, simple horizons of
sedimentary rock. As the salt has pushed upward it has dragged bedding planes upward
with it. Presuming the bedding to contain permeable sandstones and impermeable shales,
the pushed up bedding around the salt is a prospective oil trap. The time slice in the top
panel shows ancient river channels, some large, some small, that are now deeply buried.
These may also contain sand. Being natural underground “oil pipes” they are of great
interest. To see these pipes as they approach the salt dome we need a picture not at a
constant t, but at a constant t− τ(x, y).

Figure 10 shows a time slice of the original cube and the flattened cube of Figure 9.
The first thing to notice on the plane before flattening is that the panel drifts from dark
to light in place to place. This is because the horizontal layers are not fully horizontal.
Approaching the dome the change from dark to light and back again happens so rapidly
that the dome appears surrounded by rings. After flattening, the drift and rings disappear.
The reflection horizons are no longer cutting across the image. Channels no longer drift off
(above or below) the viewable time slice. Carefully viewing the salt dome it seems smaller

31

after flattening because the rings are replace by a bedding plane.

Figure 10: Slices of constant time
before and after flattening. Notice
the rings surrounding the dome are
gone giving the dome a reduced di-
ameter. (Ignore the inside of the
dome.)

VESUVIUS PHASE UNWRAPPING

Figure 11 shows radar images of Mt. Vesuvius1 in Italy. These images are made from
backscatter signals s1(t) and s2(t), recorded along two satellite orbits 800-km high and
54-m apart. The signals are very high frequency (the radar wavelength being 2.7 cm).
The signals were Fourier transformed and one multiplied by the complex conjugate of the
other, getting the product Z = S1(ω)S̄2(ω). The product’s amplitude and phase are shown
in Figure 11. Examining the data, you can notice that where the signals are strongest
(darkest on the left), the phase (on the right) is the most spatially consistent. Pixel by pixel
evaluation with the two frames in a movie program shows that there are a few somewhat
large local amplitudes (clipped in Figure 11) but because these generally have spatially
consistent phase, I would not describe the data as containing noise bursts.

To reduce the time needed for analysis and printing, I reduced the data size two different
ways, by decimation and local averaging, as shown in Figure 12. The decimation was to
about 1 part in 9 on each axis, and the local averaging was done in 9 × 9 windows giving
the same spatial resolution in each case. The local averaging was done independently in

1 A web search engine quickly finds you other views.

32

Figure 11: Radar image of Mt. Vesuvius. Left is the amplitude |Z(x, y)|. Nonreflecting
ocean in upper-left corner. Right is the phase arctan(<Z(x, y),=Z(x, y)). (European Space
Agency via Umberto Spagnolini)

the plane of the real part and the plane of the imaginary part. On the smoothed data the
phase is less noisy.

From Figures 11 and 12, we see that contours of constant phase appear to be contours
of constant altitude; this conclusion leads us to suppose that a study of radar theory would
lead us to a relation like Z(x, y) = eih(x,y), where h(x, y) is altitude. We nonradar specialists
often think of phase in eiφ = eiωt0(x,y) as being caused by some time delay and being defined
for some constant frequency ω. Knowledge of this ω (as well as some angle parameters)
would define the physical units of h(x, y).

Because the flat land away from the mountain is all at the same phase (as is the altitude),
the distance as revealed by the phase does not represent the distance from the ground to the
satellite viewer. We are accustomed to measuring altitude along a vertical line to a datum;
but here, the distance seems to be measured from the ground along a 23◦ angle from the
vertical to a datum at the satellite height.

Phase is a troublesome measurement, because we generally see it modulo 2π. Marching
up the mountain, we see the phase getting lighter and lighter until it suddenly jumps to
black, which then continues to lighten as we continue up the mountain to the next jump.
Let us undertake to compute the phase, including all its jumps of 2π. Begin with a complex
number Z representing the complex-valued image at any location in the (x, y)-plane.

reiφ = Z (84)
ln |r|+ iφ = lnZ (85)
φ(x, y) = = lnZ(x, y) + 2πN(x, y) (86)

Computers find the imaginary part of the logarithm with the arctan function of two argu-
ments, atan2(y,x), which puts the phase in the range −π < φ ≤ π, although any multiple

33

Figure 12: Phase based on decimated data (left) and smoothed data (right).

of 2π could be added. We seem to escape the 2πN phase ambiguity by differentiating:

∂φ

∂x
= = 1

Z

∂Z

∂x
=

=Z̄ ∂Z
∂x

Z̄Z
(87)

For every point on the y-axis, equation (87) is a differential equation on the x-axis. We
could integrate them all to find φ(x, y). That sounds easy. On the other hand, the same
equations are valid when x and y are interchanged, therefore we get twice as many equations
as unknowns. Ideally either of these sets of equations is equivalent to the other; but for real
data, we expect to be fitting this fitting goal:

∇φ ≈ =Z̄∇Z
Z̄Z

(88)

where ∇ = (∂
∂x ,

∂
∂y). Mathematically, computing phase this way is like our previous seismic

flattening with ∇τ ≈ d. Taking measurements to be phase differences between neighboring
mesh points, it is more correct to interpret Equation (88) as a difference equation than a
differential equation. Because we measure phase differences only over tiny distances (one
pixel), we hope not to worry about phases greater than 2π. But, if such jumps do occur,
the jumps contribute to overall error.

Let us consider a typical location in the (x, y) plane where the complex numbers Zi,j
are given. Define a shorthand a, b, c, and d as follows:

[
a b
c d

]
=

[
Zi,j Zi,j+1

Zi+1,j Zi+1,j+1

]
(89)

With this shorthand, the difference equation representation of the fitting goal (88) is:

φi+1,j − φi,j ≈ ∆φac
φi,j+1 − φi,j ≈ ∆φab

(90)

34

Now, let us find the phase jumps between the various locations. Complex numbers a and
b may be expressed in polar form, say a = rae

iφa and b = rbe
iφb . The complex number

āb = rarbe
i(φb−φa) has the desired phase ∆φab. To obtain it we take the imaginary part of

the complex logarithm ln |rarb|+ i∆φab:

φb − φa = ∆φab = = ln āb
φd − φc = ∆φcd = = ln c̄d
φc − φa = ∆φac = = ln āc
φd − φb = ∆φbd = = ln b̄d

(91)

which gives the information needed to fill in the right side of (90), as done by subroutine
igrad2init() from module unwrap on this page.

The operator needed is igrad2, gradient with its adjoint, the divergence.

Estimating the inverse gradient

To optimize the fitting goal (90), module unwrap() uses the conjugate-direction method like
the modules cgmeth() and invstack(): An open question is whether or not the required

user/gee/unwrap.c

65 s f i g r a d 2 i n i t (n1 , n2) ;
66 s f t i n y s o l v e r (s f i g r a d 2 l o p , s f c g s t e p ,
67 n1∗n2 , n1∗n2 ∗2 ,hh ,NULL, r t [0] [0] , n i t e r) ;

number of iterations is reasonable or if we need to uncover a preconditioner or more rapid
solution method. I adjusted the frame size (by the amount of smoothing in Figure 12) so
that I would get the solution in about ten seconds with 400 iterations. Results are shown
in Figure 13.

Revise igrad2 to make a module called tgrad2 which has transient boundaries.

Analytical solutions

We have found a numerical solution to fitting applications, such as:

0 ≈ ∇τ − d (92)

An analytical solution is much faster. From any regression, we get the least squares solution
when we multiply by the transpose of the operator. Thus,

0 = ∇T ∇τ − ∇T d (93)

We need to understand what is the transpose of the gradient operator. Recall the finite
difference representation of a derivative in Chapter 1. Ignoring end effects, the transpose of
a derivative is the negative of a derivative. Because the transpose of a column vector is a
row vector, the adjoint of a gradient ∇, namely, ∇T is more commonly known as the vector
divergence (∇·). Likewise, ∇T∇ is a positive definite matrix, the negative of the Laplacian

35

Figure 13: Estimated altitude.

Figure 14: Synthetic mountain with hidden backside. For your estimation enjoyment.

36

∇2. Thus, in more conventional mathematical notation, the solution τ is that of Poisson’s
equation.

∇2τ = − ∇ · d (94)

In the Fourier domain, we can have an analytic solution. There, −∇2 = k2
x + k2

y where
(kx, ky) are the Fourier frequencies on the (x, y) axes. Instead of thinking of equation (94)
as a convolution in physical space, think of it as a product in Fourier space. Thus, the
analytic solution is:

τ(x, y) = FT−1 FT ∇ · d
k2
x + k2

y

(95)

where FT denotes two-dimensional Fourier transform over x and y . Here is a trick from
numerical analysis that gives better results: Instead of representing the denominator k2

x+k2
y

in the most obvious way, let us represent it in a manner consistent with the finite-difference
way we expressed the numerator ∇ · d. Recall that −iω∆t ≈ iω̂∆t = 1 − Z = 1 −
exp(−iω∆t), which is a Fourier domain way of saying that difference equations tend to
differential equations at low frequencies. Likewise, a symmetric second time derivative has
a finite-difference representation proportional to (−2 + Z + 1/Z) and in a two-dimensional
space, a finite-difference representation of the Laplacian operator is proportional to (−4 +
X + 1/X +Y + 1/Y), where X = exp(ikx∆x) and Y = exp(iky∆y). Fourier solutions have
peculiarities (periodic boundary conditions) that are not always appropriate in practice,
but having these solutions available is often a nice place to start from when solving an
application that cannot be solved in Fourier space.

For example, suppose we feel some data values are bad, and we would like to throw out
the regression equations involving the bad data points. At Vesuvius, we might consider the
strength of the radar return (which we have previously ignored) and use it as a weighting
function W. Now, our regression (92) becomes:

0 ≈ W (∇φ− d) = (W∇)φ − Wd (96)

which is a regression with an operator W∇ and data Wd. The weighted problem is not
solvable in the Fourier domain, because the operator (W∇)T W∇ has no simple expression
in the Fourier domain. Thus, we would use the analytic solution to the unweighted problem
as a starting guess for the iterative solution to the real problem.

With the Vesuvius data, we could construct a weight W from the signal strength. We
also have available the curl, which should vanish. Vanishing is an indicator of questionable
data that should be weighted down relative to other data.

OPERATOR SCALING (BINORMALIZATION)

We can accept model m and data d as they arise from the geometry or geophysics of an
application, or we can transform them to forms that are computationally convenient, work
with them, and finally transform back. Say we transform them to new variables, u and v.

u = Mm (97)
v = Dd (98)

37

These transformations change the F operator to DFM−1 because

d = Fm (99)
Dd = DFM−1Mm (100)

v = DFM−1u (101)

The game is looking for the best M and D.

If I were able and willing to handle linear algebra in a modern way, I would show you
this matrix iteration

λ

[
d
m

]
i+1

=

[
0 F

FT 0

] [
d
m

]
i

(102)

What is λ? It is a scale factor that you use to keep the vectors normalized as the iteration
proceeds. You may recognize a path leading to eigenvectors, eigenvalues, Hermitian matri-
ces, and singular-value decomposition. You’ll need to find other sources to go further on
that path because it has not led me to a solution to the problem at hand which is how to
choose the best M and D.

If you have an operator that you are using millions of times it is worth seeking good
choices. Good choices are those that make the adjoint of your new operator DFM−1 a
good approximation to its inverse. These are the two conditions we seek:

I ≈ (DFM−1)T (DFM−1) (103)
I ≈ (DFM−1) (DFM−1)T (104)

If these were true, we could probe with any test vectors we wished

t̂m = (M−1)T (something) M−1 tm (105)
t̂d = D (something else) DT td (106)

and find both t̂m ≈ tm and t̂d ≈ td. So, the game is to play with M and D to try to get
this to happen.

About the only trick I know is to try M and D as diagonal matrices. For test functions
t, I generally use a pattern of moderately spaced impulses. In physical space we may see
places where t̂ is smaller than t. Those are the places to boost the corresponding diagonal.

There are many test functions you could use. You could use all ones. You could use
random numbers. You could use a pile of random old data, though I’m not sure what you
would use for old models. Take the output. Take its absolute value. Maybe smooth it.
Take the square root since the half you put in F appears a second time in FT.

I know one more trick. In seismology many operators appear as integrals. One of many
such operators is called “Kirchhoff migration”. Because these operators and their adjoints
contain integrations they boost low frequencies. We can attenuate them back to their
original size by having M or D apply

√
−iω (known in the time domain as the “Hankel

tail”).

What, may we ask is the interpretation of the (u,v) variables? They feel like “energy
conservation” variables, though it makes no sense to say the physical energy in m or d
should be conserved in the way of Parseval’s theorem of Fourier transforms. I imagined the
(u,v) variables might be especially suitable for display (like preconditioned variables) but
now I am less certain.

38

THE WORLD OF CONJUGATE GRADIENTS

Nonlinearity arises in two ways: First, modeled data might be a nonlinear function of the
model parameters. Second, observed data could contain imperfections that force us to use
nonlinear methods of statistical estimation.

Physical nonlinearity

Methods of physics may relate modeled data dtheor to model parameters m, with a nonlinear
relation, say dtheor = f(m). The power-series approach then leads to representing modeled
data as:

dtheor = f(m0 + ∆m) ≈ f(m0) + F∆m (107)

where F is the matrix of partial derivatives of data values by model parameters, say
∂di/∂mj , evaluated at m0. The modeled data dtheor minus the observed data dobs is
the residual we minimize.

0 ≈ dtheor − dobs = F∆m + [f(m0)− dobs] (108)
rnew = F∆m + rold (109)

It is worth noticing that the residual updating (109) in a nonlinear application is the same
as that in a linear application (55). If you make a large step ∆m, however, the new residual
is different from that expected by (109). Thus, you should always re-evaluate the residual
vector at the new location, and if you are reasonably cautious, you should be sure the
residual norm has actually decreased before you accept a large step.

The pathway of inversion with physical nonlinearity is well developed in the academic
literature, and Bill Symes at Rice University has a particularly active group.

There are occasions to change the weighting function during model fitting. Then, one
simply restarts the calculation from the current model. In the code, you would flag a restart
with the expression forget=true.

Coding nonlinear fitting problems

An adaptation of a linear method gives us a nonlinear solver by simply recomputing the
gradient at each iteration. Omitting the weighting function (for simplicity) the template
is:

iterate {
r ←− f(m)− d
Define F = ∂d/∂m.
∆m ←− FT r
∆r ←− F ∆m
(m, r) ←− step(m, r,∆m,∆r)
}

A formal theory for the optimization exists, but we are not using it here. The assump-
tion we make is that the step size is small, so that familiar line-search and plane-search

39

approximations can succeed in reducing the residual. Unfortunately, this assumption is not
reliable. What we should do is test that the residual really does decrease, and if it does
not, we should revert to smaller step size. Perhaps, we should test an incremental variation
on the status quo: where inside solver, we check to see if the residual diminished in the
previous step; and if it did not, restart the iteration (choose the current step to be steepest
descent instead of CD).

Experience shows that nonlinear applications have many pitfalls. Start with a linear
problem, add a minor physical improvement or abnormal noise, and the problem becomes
nonlinear and probably has another solution far from anything reasonable. When solving
such a nonlinear problem, we cannot arbitrarily begin from zero, as we do with linear prob-
lems. We must choose a reasonable starting guess. Chapter ?? on the topic of regularization
offers an additional way to reduce the dangers of nonlinearity.

Inverse of a 2× 2 matrix

A−1 A = I (110)

1
ad− bc

[
d −b
−c a

] [
a b
c d

]
=

[
1 0
0 1

]
(111)

Standard methods

The conjugate-direction method is really a family of methods. Mathematically, where there
are n unknowns, these algorithms all converge to the answer in n (or fewer) steps. The var-
ious methods differ in numerical accuracy, treatment of underdetermined systems, accuracy
in treating ill-conditioned systems, space requirements, and numbers of dot products. Tech-
nically, the method of CD used in the cgstep module is not the conjugate-gradient method
itself, but is equivalent to it. This method is more properly called the conjugate-direction
method with a memory of one step. I chose this method for its clarity and flexibility. If you
would like a free introduction and summary of conjugate-gradient methods, I particularly
recommend An Introduction to Conjugate Gradient Method Without Agonizing Pain by
Jonathon Shewchuk, which you can download2.

I suggest you skip over the remainder of this section and return after you have seen
many examples and have developed some expertise, and have some technical problems.

The conjugate-gradient method was introduced by Hestenes and Stiefel in 1952.
To read the standard literature and relate it to this book, you should first realize that when
I write fitting goals like

0 ≈ W(Fm− d) (112)
0 ≈ Am, (113)

they are equivalent to minimizing the quadratic form:

m : min
m

Q(m) = (mT FT − dT)WT W(Fm− d) + mT AT Am (114)

2http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-gradient.ps

http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/painless-conjugate-gradient.ps

40

The optimization theory (OT) literature starts from a minimization of

x : min
x
Q(x) = xT Hx− bT x (115)

To relate equation (114) to (115) we expand the parentheses in (114) and abandon the
constant term dT d. Then gather the quadratic term in m and the linear term in m. There
are two terms linear in m that are transposes of each other. They are scalars so they are
equal. Thus, to invoke “standard methods,” you take your problem-formulation operators
F, W, A and create two subroutines that apply:

H = FT WT WF + AT A (116)
bT = 2(FT WT Wd)T (117)

The operators H and bT operate on model space. Standard procedures do not require their
adjoints because H is its own adjoint and bT reduces model space to a scalar. You can see
that computing H and bT requires one temporary space the size of data space (whereas
cgstep requires two).

When people have trouble with conjugate gradients or conjugate directions, I always
refer them to the Paige and Saunders algorithm LSQR. Methods that form H explicitly
or implicitly (including both the standard literature and the book3 method) square the
condition number, that is, they are twice as susceptible to rounding error as is LSQR. The
Paige and Saunders method is reviewed by Nolet in a geophysical context.

EXERCISES:

1 It is possible to reject two dips with the operator:

(∂x + p1∂t)(∂x + p2∂t) (118)

This is equivalent to:(
∂2

∂x2
+ a

∂2

∂x∂t
+ b

∂2

∂t2

)
u(t, x) = v(t, x) ≈ 0 (119)

where u is the input signal, and v is the output signal. Show how to solve for a and b
by minimizing the energy in v.

2 Given a and b from the previous exercise, what are p1 and p2?

3 Reduce d = Fm to the special case of one data point and two model points like this:

d =
[

2 1
] [m1

m2

]
(120)

What is the null space?

4 In 1695, 150 years before Lord Kelvin’s absolute temperature scale, 120 years before
Sadi Carnot’s PhD. thesis, 40 years before Anders Celsius, and 20 years before Gabriel
Fahrenheit, the French physicist Guillaume Amontons, deaf since birth, took a mercury
manometer (pressure gauge) and sealed it inside a glass pipe (a constant volume of air).

41

He heated it to the boiling point of water at 100◦C. As he lowered the temperature
to freezing at 0◦C, he observed the pressure dropped by 25% . He could not drop
the temperature any further, but he supposed that if he could drop it further by a
factor of three, the pressure would drop to zero (the lowest possible pressure), and
the temperature would have been the lowest possible temperature. Had he lived after
Anders Celsius, he might have calculated this temperature to be −300◦C (Celsius).
Absolute zero is now known to be −273◦C.

It is your job to be Amontons’ lab assistant. You make your i-th measurement of
temperature Ti with Issac Newton’s thermometer; and you measure pressure Pi and
volume Vi in the metric system. Amontons needs you to fit his data with the regression
0 ≈ α(Ti − T0)− PiVi and calculate the temperature shift T0 that Newton should have
made when he defined his temperature scale. Do not solve this problem! Instead, cast
it in the form of equation (??), identifying the data d and the two column vectors f1

and f2 that are the fitting functions. Relate the model parameters x1 and x2 to the
physical parameters α and T0 . Suppose you make ALL your measurements at room
temperature, can you find T0 ? Why or why not?

5 One way to remove a mean valuem from signal s(t) = s is with the fitting goal 0 ≈ s−m.
What operator matrix is involved?

6 What linear operator subroutine from Chapter ?? can be used for finding the mean?

7 How many CD iterations should be required to get the exact mean value?

8 Write a mathematical expression for finding the mean by the CG method.

