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ABSTRACT

Small geological features manifest themselves in seismic data in the form of
diffracted waves, which are fundamentally different from seismic reflections. Us-
ing two field data examples and one synthetic example, we demonstrate the pos-
sibility of separating seismic diffractions in the data and imaging them with
optimally chosen migration velocities. Our criterion for separating reflection and
diffraction events is the smoothness and continuity of local event slopes that
correspond to reflection events. For optimal focusing, we develop the local vari-
max measure. The objectives of this work are velocity analysis implemented in
the post-stack domain and high-resolution imaging of small-scale heterogeneities.
Our examples demonstrate the effectiveness of the proposed method for high-
resolution imaging of such geological features as faults, channels, and salt bound-
aries.

INTRODUCTION

Diffracted and reflected seismic waves are fundamentally different physical phenom-
ena (Klem-Musatov, 1994). Most seismic data processing is tuned to imaging and
enhancing reflected waves, which carry most of the information about subsurface.
The value of diffracted waves, however, should not be underestimated (Khaidukov
et al., 2004). When seismic exploration focuses on identifying small subsurface fea-
tures (such as faults, fractures, channels, and rough edges of salt bodies) or small
changes in seismic reflectivity (such as those caused by fluid presence or fluid flow
during reservoir production), it is diffracted waves that contain the most valuable
information.

In this paper, we develop an integrated approach for extracting and imaging of
diffracted events. We start with stacked or zero-offset data as input and produce time-
migrated images with separated and optimally focused diffracted waves as output.
The output of our processing flow can be compared to coherence cubes (Bahorich
and Farmer, 1995; Marfurt et al., 1998). While the coherence cube algorithm tries
to enhance incoherent features, such as faults, in the migrated image domain, we
perform the separation in unmigrated data, where these features appear in the form
of diffracted waves.
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We also introduce diffraction-event focusing as a criterion for migration velocity
analysis, as opposed to the usual “flat-gather” criterion used in seismic imaging.
Focusing analysis is applicable not only to multi-coverage prestack data but also to
post-stack or single-coverage data.

The idea of extracting information from seismic diffractions is not new. Harlan
et al. (1984) used forward modeling and local slant stacks for estimating velocities
from diffractions; Landa and Keydar (1998) used common-diffraction-point sections
for imaging of diffraction energy and detecting local heterogeneities; Soellner and
Yang (2002) simulated diffraction responses for enhancing velocity analysis. Sava
et al. (2005) incorporated diffraction imaging in wave-equation migration velocity
analysis.

The novelty of our approach is in integration of two essential steps:

1. Separating diffracted and reflected events in the data space,

2. Focusing analysis for automatic detection of migration velocities optimal for
imaging diffractions.

We explain both steps and illustrate their application with field and synthetic
datasets.

SEPARATING DIFFRACTIONS

The underlying assumption that we employ for separating diffracted and reflected
events is that, in a stacked data volume, background reflections correspond to strong
coherent events with continuously variable slopes. Removing those events reveals
other coherent information, often in the form of seismic diffractions. We propose
to identify and remove reflection events with the method of plane-wave destruction
(Claerbout, 1992; Fomel, 2002). Plane-wave destruction estimates continuously vari-
able local slopes of dominant seismic events by forming a prediction of each data trace
from its neighboring traces with optimally compact non-stationary filters that follow
seismic energy along the estimated slopes. Minimizing the prediction residual while
constraining the local slopes to vary smoothly provides an optimization objective
function analogous to differential semblance (Symes and Carazzone, 1991). Iterative
optimization of the objective function generates a field of local slopes. The prediction
residual then contains all events, including seismic diffractions, that do not follow
the dominant slope pattern. An analogous idea, but with implementation based on
prediction-error filters, was previously discussed by Claerbout (1994) and Schwab
et al. (1996). Although separation of reflection and diffraction energy can never be
exact, our method serves the practical purpose of enhancing the wave response of
small subsurface discontinuities.
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IMAGING DIFFRACTIONS

How can one detect the spatially-variable velocity necessary for focusing of different
diffraction events? A good measure of focusing is the varimax norm used by Wiggins
(1978) for minimum-entropy deconvolution and by Levy and Oldenburg (1987) for
zero-phase correction. The varimax norm is defined as

φ =

N
N∑
i=1

s4i(
N∑
i=1

s2i

)2 , (1)

where si are seismic signal amplitudes inside a window of size N . Varimax is simply
related to kurtosis of zero-mean signals.

Rather than working with data windows, we turn focusing into a continuously
variable attribute using the technique of local attributes (Fomel, 2007a). Noting that
the correlation coefficient of two sequences ai and bi is defined as

c[a, b] =

N∑
i=1

ai bi√√√√ N∑
i=1

a2i

N∑
i=1

b2i

(2)

and the correlation of ai with a constant is

c[a, 1] =

N∑
i=1

ai√√√√N N∑
i=1

a2i

, (3)

one can interpret the varimax measure in equation 1 as the inverse of the squared
correlation coefficient between s2i and a constant: φ = 1/c[s2, 1]2. Well-focused signals
have low correlation with a constant and correspondingly high varimax.

Going further toward a continuously variable focusing attribute, notice that the
squared correlation coefficient can be represented as the product of two quantities
c[s2, 1]2 = p q, where

p =

N∑
i=1

s2i

N
, q =

N∑
i=1

s2i

N∑
i=1

s4i

. (4)

Furthermore, p is the solution of the least-squares minimization problem

min
p

N∑
i=1

(
s2i − p

)2
, (5)
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and q is the solution of the least-squares minimization

min
q

N∑
i=1

(
1 − q s2i

)2
. (6)

This allows us to define a continuously variable attribute φi by using continuously
variable quantities pi and qi, which are defined as solutions of regularized optimization
problems

min
pi

(
N∑
i=1

(
s2i − pi

)2
+R [pi]

)
, (7)

min
qi

(
N∑
i=1

(
1 − qi s

2
i

)2
+R [qi]

)
, (8)

where R is a regularization operator designed to avoid trivial solutions by enforc-
ing a desired behavior (such as smoothness). Shaping regularization (Fomel, 2007b)
provides a particularly convenient method for enforcing smoothing in an iterative
optimization scheme.

We apply the local focusing measure to obtain migration-velocity panels for every
point in the image. First, we follow the procedure outlined in the previous section
to replace a stacked or zero-offset section with a section containing only separated
diffractions. Next, we migrate the data multiple times with different migration veloc-
ities. This is accomplished by velocity continuation (Fomel, 2003a), a method that
performs time-migration velocity analysis by continuing seismic images in velocity
with the process also called “image waves” (Hubral et al., 1996). The velocity con-
tinuation theory (Fomel, 2003b) shows that one can accomplish time migration with
a set of different velocities by making differential steps in velocity similarly to the
method of cascaded migrations (Larner and Beasley, 1987) but described and im-
plemented as a continuous process. While comparable in theory to an ensemble of
Stolt migrations (Fowler, 1984; Mikulich and Hale, 1992), velocity continuation has
the advantage of working directly in the image domain. It is implemented with an
efficient and robust algorithm based on the Fast Fourier Transform.

Finally, we compute φi for every sample point in each of the migrated images.
Thus, N in equations 7 and 8 refers to the total number of sample points in an
image. The output is focusing image gathers (FIGs), exemplified in Figure 1. A
FIG is analogous to a conventional migration-velocity analysis panel and suitable for
picking migration velocities. The main difference is that the velocity information is
obtained from analysis of diffraction focusing as opposed to semblance of flattened
image gathers used in prestack analysis.

EXAMPLES

Three different examples illustrate applications of our method to imaging of geological
faults and irregular salt boundaries.
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Fault detection

Figure 1: Focusing image gathers (FIG) for post-stack migration velocity analysis by
diffraction focusing. Red colors indicate strong focusing. Superimposed black curves
are slices of the picked migration velocity shown in Figure 3(b).

The data for our first example are shown in Figure 2(a), which displays a stacked
section of a vintage Gulf of Mexico dataset (Claerbout, 2005). Diffractions caused by
irregular fault boundaries are preserved in the stack thanks to dip moveout processing
but are hardly visible underneath strong reflection responses. Figure 2(b) shows the
dominant slope of reflection events estimated by the plane-wave destruction method.
Numerous diffractions were separated from reflections by plane-wave destruction and
are shown in Figure 3(a).

Figure 3(b) shows the migration velocity picked from focusing common-image
gathers (FIGs). Example FIGs are shown in Figure 1. Figure 4(a) is the image of
diffracted events, which collapse to collectively form fault surfaces. Figure 4(b) is the
image obtained by migrating the original stack with velocities estimated from diffrac-
tion focusing analysis. In this final image, fault surfaces align with discontinuities in
seismic reflectors. The image compares favorably with images of the same dataset
from the conventional processing shown by Claerbout (2005).
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(a)

(b)

Figure 2: First test example. (a) Stacked section from a Gulf of Mexico dataset. (b)
Local slopes estimated by plane-wave destruction.
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(a)

(b)

Figure 3: Diffraction separation. (a) Diffraction events separated from data in Fig-
ure 2(a). (b) Migration velocity picked from local varimax scans after velocity con-
tinuation of diffractions.
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(a)

(b)

Figure 4: Migrated images. (a) Migrated diffractions from Figure 3(a). (b) Initial
data from Figure 2(a) migrated with velocity estimated by diffraction imaging.
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Salt detection

(a)

(b)

Figure 5: Second test example. (a) Near-offset section from a Gulf of Mexico dataset.
(b) Local slopes estimated by plane-wave destruction.

Figure 5(a) shows another example, also from the Gulf of Mexico. We used the
nearest-offset section for diffraction analysis. Plane-wave destruction estimates domi-
nant slopes of continuous reflection events [Figure 5(b)] and reveals numerous diffrac-
tions generated by rough edges of a salt body [Figure 6(a)]. We used shaping regu-
larization (Fomel, 2007b) with the smoothing radius of 40-by-10 samples to constrain
the slope-estimation process. Focusing analysis generates a time migration velocity
[Figure 6(b)] suitable for collapsing diffractions [Figure 7(a)]. Both sharp edges of the
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(a)

(b)

Figure 6: Diffraction separation. (a) Diffraction events separated from data in Fig-
ure 5(a). (b) Migration velocity picked from local varimax scans after velocity con-
tinuation of diffractions.
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(a)

(b)

Figure 7: Migrated images. (a) Migrated diffractions from Figure 6(a). (b) Initial
data from Figure 5(a) migrated with velocity estimated by diffraction imaging.
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salt body and continuous specular reflections appear in the final image [Figure 7(b)].
Inevitably, prestack depth migration (as opposed to time migration) is required to
properly position the salt boundary in depth. Time migration, however, provides a
reasonable first-order approximation computed at a small fraction of the cost.

Channel detection

The third example is a 3-D synthetic dataset. The velocity model was designed
to simulate a complex sand channel geometry in a deep-water clastic reservoir (Fig-
ure 8(a)). Including an overburden with stochastically generated velocity fluctuations
on top of the reservoir model, we generated zero-offset data shown in Figure 8(b).
The data contain reflections from continuous parts of the model and numerous diffrac-
tions generated by the channel edges. Separating diffractions using in-line plane-wave
destruction (Figure 9), we compare depth-migrated images of the original data and
of the separated diffractions (Figure 10). The fine details of the stacked channel
geometry are revealed by diffraction imaging.

CONCLUSIONS

We have developed a method of efficient migration velocity analysis based on separa-
tion and imaging of seismic diffractions. The efficiency follows from the fact that the
proposed analysis is applied in the post-stack domain as opposed to the conventional
prestack velocity analysis. We used continuity of dominant reflections in the zero-
offset or stacked sections as a criterion for separating reflections from diffractions. We
then imaged separated diffractions using local focusing analysis for picking optimal
migration velocities. A prestack extension of our approach was presented by Taner
et al. (2006).
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(a)

(b)

Figure 8: 3-D synthetic test. (a) Synthetic velocity model for a channelized reservoir.
(b) Modeled zero-offset data.
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(a)

(b)

Figure 9: Diffraction separation for the 3-D synthetic test from Figure 8. (a) Dom-
inant in-line slope estimated by plane-wave destruction. (b) Diffractions separated
from the data.
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(a)

(b)

Figure 10: Depth migration of the 3-D synthetic test data. (a) Migrated data. (b)
Migrated diffractions.
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