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ABSTRACT

The objective of this work is to build an efficient algorithm (a) to estimate seismic
velocity from time-migration velocity, and (b) to convert time-migrated images to
depth. We establish theoretical relations between the time-migration velocity and
the seismic velocity in 2-D and 3-D using paraxial ray tracing theory. The relation
in 2-D implies that the conventional Dix velocity is the ratio of the interval seismic
velocity and the geometrical spreading of the image rays. We formulate an inverse
problem of finding seismic velocity from the Dix velocity and develop a numerical
procedure for solving it. This procedure consists of two steps: (1) computation
of the geometrical spreading of the image rays and the true seismic velocity in
the time-domain coordinates from the Dix velocity; (2) conversion of the true
seismic velocity from the time domain to the depth domain and computation of
the transition matrices from time-domain coordinates to depth.
For step 1, we derive a partial differential equation (PDE) in 2-D and 3-D re-
lating the Dix velocity and the geometrical spreading of the image rays to be
found. This is a nonlinear elliptic PDE. The physical setting allows us to pose
a Cauchy problem for it. This problem is ill-posed. However we are able to
solve it numerically in two ways on the required interval of time. One way is a
finite difference scheme inspired by the Lax-Friedrichs method. The second way
is a spectral Chebyshev method. For step 2, we develop an efficient Dijkstra-like
solver motivated by Sethian’s Fast Marching Method.
We test our numerical procedures on a synthetic data example and apply them to
a field data example. We demonstrate that our algorithms give significantly more
accurate estimate of the seismic velocity than the conventional Dix inversion.
Our velocity estimate can be used as a reasonable first guess in building velocity
models for depth imaging.
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INTRODUCTION

Time-domain seismic imaging is a robust and efficient process routinely applied to
seismic data (Yilmaz, 2001; Robein, 2003). Rapid scanning and determination of
time-migration velocity can be accomplished either by repeated migrations (Yilmaz
et al., 2001) or by velocity continuation (Fomel, 2003). Time migration is considered
adequate for seismic imaging in areas with mild lateral velocity variations. However,
even mild variations can cause structural distortions of time-migrated images and
render them inadequate for accurate geological interpretation of subsurface structures.

To remove structural errors inherent in time migration, it is necessary to convert
time-migrated images into the depth domain either by migrating the original data
with a prestack depth migration algorithm or by depth migrating post-stack data
after time demigration (Kim et al., 1997). Each of these options requires converting
the time migration velocity to a velocity model in depth.

The connection between the time- and depth-domain coordinates is provided by
the concept of image ray, introduced by Hubral (1977). Image rays are seismic rays
that arrive normal to the Earth’s surface. Hubral’s theory explains how a depth ve-
locity model can be converted to the time coordinates. However, it does not explain
how a depth velocity model can be converted to the time-migration velocity. More-
over, image-ray tracing is a numerically inconvenient procedure for achieving uniform
coverage of the subsurface. This may explain why simplified image-ray-tracing algo-
rithms (Larner et al., 1981; Hatton et al., 1981) did not find widespread application in
practice. Other limitations of image rays are related to the inability of time migration
to handle large lateral variations in velocity (Bevc et al., 1995; Robein, 2003).

The objective of the present work is to find an efficient method for building a
velocity model from time-migration velocity. We establish new ray-theoretic connec-
tions between time-migration velocity and seismic velocity in 2-D and 3-D. These
results are based on the image ray theory and the paraxial ray tracing theory (Popov
and Pšenčik, 1978; Červený, 2001; Popov, 2002). Our results can be viewed as an
extension of the Dix formula (Dix, 1955) to laterally inhomogeneous media. We show
that the Dix velocity is seismic velocity divided by the geometrical spreading of the
image rays. Hence, we use the Dix velocity instead of time migration velocity as a
more convenient input. We develop a numerical approach to find (a) seismic velocity
from the Dix velocity, and (b) transition matrices from the time-domain coordinates
to the depth-domain coordinates. We test our approach on synthetic and field data
examples.

Our approach is complementary to more traditional velocity estimation methods
and can be used as the first step in a velocity model building process.
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TIME MIGRATION VELOCITY

Kirchhoff prestack time migration is commonly based on the following travel time
approximation (Yilmaz, 2001). Let s be a source, r be a receiver, and x be the
reflection subsurface point. Then the total travel time from s to x and from x to r is
approximated as

T (s,x) + T (x, r) ≈ T̂ (x0, t0, s, r) (1)

where x0 and t0 are effective parameters of the subsurface point x. The approximation
T̂ usually takes the form of the double-square-root equation

T̂ (x0, t0, s, r) =

√
t20 +

|x0 − s|2
v2m(x0, t0)

+

√
t20 +

|x0 − r|2
v2m(x0, t0)

, (2)

where x0 and t0 are the escape location and the travel time of the image ray (Hubral,
1977) from the subsurface point x. Regarding this approximation, let us list four
cases depending on the seismic velocity v and the dimension of the problem:

2-D and 3-D, velocity v is constant. Equation 2 is exact, and vm = v.

2-D and 3-D, velocity v depends only on the depth z. Equation 2 is a conse-
quence of the truncated Taylor expansion for the travel time around the surface
point x0. Velocity vm depends only on t0 and is the root-mean-square velocity:

vm(t0) =

√
1

t0

∫ t0

0

v2(z(t))dt. (3)

In this case, the Dix inversion formula (Dix, 1955) is exact. We formally define
the Dix velocity vDix(t) by inverting equation 3, as follows:

vDix(t) =

√
d

d t0
(t0v2m(t0)) . (4)

2-D, velocity is arbitrary. Equation 2 is a consequence of the truncated Taylor
expansion for the travel time around the surface point x0. Velocity vm(x0, t0) is
a certain kind of mean velocity, and we establish its exact meaning in the next
section.

3-D, velocity is arbitrary. Equation 2 is heuristic and is not a consequence of
the truncated Taylor expansion. In order to write an analog of travel time
approximation 2 for 3-D, we use the relation (Hubral and Krey, 1980)

Γ = [v(x0)R(x0, t0)]
−1, (5)

where Γ is the matrix of the second derivatives of the travel times from a
subsurface point x to the surface, R is the matrix of radii of curvature of the
emerging wave front from the point source x, and v(x0) is the velocity at the
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surface point x0. For convenience, we prefer to deal with matrix K ≡ Γ−1,
which, according to equation 5 is

K(x0, t0) ≡ v(x0)R(x0, t0). (6)

The travel time approximation for 3-D implied by the Taylor expansion is

T̂ (x0, t0, s, r)

=
√

t20 + t0(x0 − s)T [K(x0, t0)]−1(x0 − s) (7)

+
√

t20 + t0(x0 − r)T [K(x0, t0)]−1(x0 − r).

The entries of the matrix 1
t0

K(x0, t0) have dimension of squared velocity and
can be chosen optimally in the process of time migration. It is possible to show,
however, that one needs only the values of

det

(
∂

∂t0
K(x0, t0)

)
(8)

to perform the inversion. This means that the conventional 3-D prestack time
migration with traveltime approximation 2 provides sufficient input for our in-
version procedure in 3-D. The determinant in equation 8 is well approximated
by the square of the Dix velocity obtained from the 3-D prestack time migration
using the approximation given by equation 2.

One can employ more complex and accurate approximations than the double-square-
root equations 2 and 7, i.e. the shifted hyperbola approximation (Siliqi and Bousquié,
2000). However, other known approximations also involve parameters equivalent to
vm or K.

SEISMIC VELOCITY

In this section, we will establish theoretical relationships between time-migration
velocity and seismic velocity in 2-D and 3-D.

The seismic velocity and the Dix velocity are connected through the quantity Q,
the geometrical spreading of image rays. Q is a scalar in 2-D and a 2 × 2 matrix in
3-D. The simplest way to introduce Q is the following. Trace an image ray x(x0, t).
x0 is the starting surface point, t is the traveltime. Call this ray central. Consider
a small tube of rays around it. All these rays start from a small neighborhood dx0

of the point x0 perpendicular to the earth surface. Thus, they represent a fragment
of a plane wave propagating downward. Consider the fragment of the wave front
defined by this ray tube at time t0. Let dq be the fragment of the tangent to the
front at the point x(x0, t0) reached by the central ray at time t0, bounded by the
ray tube (Figure 1). Then, in 2-D, Q is the derivative Q(x0, t0) = dq

dx0
. In 3-D, Q

is the matrix of the derivatives Qij(x0, t0) = dqi

dx0j
, i, j = 1, 2, where derivatives are
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Figure 1: Illustration for the definition of geometrical spreading.

taken along certain mutually orthogonal directions e1, e2 (Popov and Pšenčik, 1978;
Červený, 2001; Popov, 2002).

The time evolution of the matrices Q and P is given by

d

dt

(
Q
P

)
=

(
0 v20I
− 1

v0
V 0

)(
Q
P

)
, (9)

where v0 it the velocity at the central ray at time t, V =
(

∂2v
∂qi∂qj

)
i,j=1,2

, and I is the

2 × 2 identity matrix. The absolute value of det Q has a simple meaning: it is the
geometrical spreading of the image rays (Popov and Pšenčik, 1978; Červený, 2001;
Popov, 2002). The matrix Γ, introduced in the previous section, relates to Q and P
as Γ = PQ−1. Hence, K = QP−1.

In (Cameron et al., 2007), we have proven that

vDix(x0, t0) ≡
√

∂

∂t0
(t0v2m(x0, t0)) =

v(x(x0, t0), z(x0, t0))

|Q(x0, t0)|
(10)

in 2-D, where vm(x0, t0) is the time-migration velocity, and

∂

∂t0
(K(x0, t0)) = v(x(x0, t0))

(
Q(x0, t0)Q

T (x0, t0)
)−1

(11)

in 3-D, K is defined by equation 6 and can be determined from equation 7.
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PARTIAL DIFFERENTIAL EQUATIONS FOR THE
GEOMETRICAL SPREADING OF IMAGE RAYS

In this section, we derive the partial differential equations for Q in 2-D and 3-D.
From now on, we will denote the square of the Dix velocity by f in 2-D and the
corresponding matrix by F in 3-D, to avoid the subscript:

F ≡ ∂

∂t0
(K(x0, t0)) . (12)

Furthermore, we imply that t0 denotes the one-way traveltime along the image rays.
Finally, we assume that our domain does not contain caustics, i.e., the image rays do
not cross on the interval of time we consider.

2-D case

Consider a set of image rays coming to the surface. Suppose we are tracing them
all backwards in time together with the quantities Q and P . Let us eliminate the
unknown velocity v in system 9 using equation 10. Moreover, let us eliminate the
differentiation in q using the definition of Q and rewrite it in the time-domain coor-
dinates x0, t0). Indeed, Q = dq

dx0
, hence d

dq
= d

dx0

dx0

dq
= Q−1 d

dx0
. Therefore, system 9

becomes

Qt0 = (fQ)2P, Pt0 = − 1

fQ

(
(fQ)x0

Q

)
x0

. (13)

Eliminating P in system 13, we get the following partial differential equation (PDE)
for Q (

Qt0

f 2Q2

)
t0

= − 1

fQ

(
(fQ)x0

Q

)
x0

. (14)

The initial conditions are Q(x0, 0) = 1, Qt0(x0, 0) = 0. Equation 14 simplifies in
terms of the negative reciprocal of Q. Introduce y = − 1

Q
. Then equation 14 becomes(

yt0
f 2

)
t0

=
y

f

((
f

y

)
x0

y

)
x0

. (15)

In the expanded form, equation 15 is

yt0t0
f 2
− 2

yt0ft0
f 3

= y
fx0x0

f
− yx0

fx0

f
− yx0x0 +

y2x0

y
. (16)

3-D case

Equation 11 can be rewritten in the following form

v = 4
√

det F(det Q)2, (17)
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where F is the left-hand side of equation 11. As in 2-D, we rewrite system 9 in the
time-domain coordinates (x0, t0). Then we get

Qt0 = v2P, (18)

Pt0 = −1

v
Q−1

[
∇
(
Q−1∇v

)T]
Q, (19)

where v is given by equation 17, and the gradients are taken with respect to x0. Then
the PDE for Q is (

1

v2
Qt0

)
t0

= −1

v
Q−1

[
∇
(
Q−1∇v

)T]
Q. (20)

The initial conditions are Q(x0, 0) = I2, Qt0(x0, 0) = 0. The required input
√

det F is
well-approximated by the squares of the Dix velocity obtained from the 3-D prestack
time migration. We emphasize that despite the fact that Q is a matrix in 3-D, scalar
data are enough for its computation.

Cauchy problem for elliptic equations

Equations 14 and 20 reveal the nature of the instabilities in the problem in hand.
These PDEs are elliptic, while the physical setting allows us to pose only a Cauchy
problem for them, which is well-known to be ill-posed. Furthermore, the fact that the
PDEs involve not only the Dix velocity itself, but also its first and second derivatives,
leads to high sensitivity of the solutions to input data.

Nonetheless, we found two ways for solving these PDEs numerically on the re-
quired, and relatively short, interval of time: namely, a finite difference scheme in-
spired by the Lax-Friedrichs method and a spectral Chebyshev method. A detailed
analysis of the problem shows that our methods work thanks to

1. the special input vDix, corresponding to a positive finite seismic velocity;

2. the special initial conditions Q(x0, t0 = 0) = 1, Qt(x0, t0 = 0) = 0 corresponding
to the image rays;

3. the fact that our finite difference method contains error terms which damp the
high harmonics; truncation of the polynomial series in the spectral Chebyshev
method which is similar to truncation of the high harmonics; and

4. the short interval of time, in which we need to compute the solution, so that
the growing low harmonics fail to develop significantly.

Items 1 and 2 say that the exact solutions of our PDEs for the hypothetical perfect Dix
velocity given by equations 10 and 11 are finite and nonzero. Items 3 and 4 say that
the numerical methods take care of the imperfection of the data and computations
on a short enough time interval.
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INVERSION METHODS

Our numerical reconstruction of true seismic velocity v(x) in depth-domain coordi-
nates from the Dix velocity given in the time-domain coordinates (x0, t0) consists of
two steps:

Step 1. Compute the geometrical spreading of the image rays in the time-domain
coordinates from the Dix velocity by solving equation 14 in 2-D and 20 in 3-D.
Then find v(x0, t0) from equation 10 in 2-D and equation 17 in 3-D.

Step 2. Convert the seismic velocity v(x0, t0) in the time-domain coordinates to
the depth-domain coordinates x using the time-to-depth conversion algorithm,
which was presented by Cameron et al. (2007). It is a fast and robust Dijkstra-
like solver motivated by the Fast Marching method (Sethian, 1996, 1999).

We performed step 1 in two ways: a finite difference method and a spectral Cheby-
shev method.

Finite difference method

This method was inspired by the Lax-Friedrichs method for hyperbolic conservation
laws Lax (1954) due to its total variation diminishing property. We use the “Lax-
Friedrichs averaging” and the wide 5-point stencil in space. The scheme is given
by

P n+1
j =

P n
j+1 + P n

j−1

2
− ∆t

4∆x

1

vnj

(
vnj+2 − vnj
Qn

j+1

−
vnj − vnj−2
Qn

j−1

)
, (21)

− 1

Qn+1
j

= − 1

Qn
j

+
∆t

2

(
(fn

j )2P n
j + (fn+1

j )2P n+1
j

)
, (22)

where v ≡ fQ. We impose the following boundary conditions Qn
0 = Qn

nx−1 = 1, P n
0 =

P n
nx−1 = 0 corresponding the straight boundary rays. We set the initial conditions

Q0
j = 1, P 0

j = 0 corresponding to the initial conditions for the image rays traced
backward: Q = 1, P = 0.

Spectral Chebyshev method

Alternatively, we solve our PDE in the form given by equation 15 by a spectral
Chebyshev method Boyd (2001). Using cubic splines, we define the input data at
Ncoef Chebyshev points. We compute the Chebyshev coefficients and the coefficients
of the derivatives in the right-hand side of equation 15. Then we use a smaller number
Neval of the coefficients for function evaluation. We need to do such Chebyshev
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differentiation twice. Finally we perform the time step using the stable third-order
Adams-Bashforth method Boyd (2001), which is

un+1 = un + ∆t

(
23

12
F n − 4

3
F n−1 +

5

12
F n−2

)
, (23)

where F n ≡ F (un, x, tn) is the right-hand side. In numerical examples, we tried
Ncoef ≥ 100 and Neval ≤ 25. This method allows larger time steps than the finite
difference, and has the adjustable parameter Neval.

For step 2, we use a Dijkstra-like solver introduced in Cameron et al. (2007). It
is an efficient time-to-depth conversion algorithm motivated by the Fast Marching
Method (Sethian, 1996). The input for this algorithm is v(x0, t0) and the outputs are
the seismic velocity v(x, z) and the transition matrices from time-domain to depth-
domain coordinates x0(x, z) and t0(x, z). We solve the eikonal equation with an
unknown right-hand side coupled with the orthogonality relation

|∇t0| =
1

v(x0(x, z), t0(x, z))
, ∇t0 · ∇x0 = 0. (24)

The orthogonality relation means that the image rays are orthogonal to the wave-
fronts. Such time-to-depth conversion is very fast and produces the outputs directly
on the depth-domain grid.

EXAMPLES

Synthetic data example

Figure 2(a) shows a synthetic velocity model. The model contains a high velocity
anomaly that is asymmetric and decays exponentially. The corresponding Dix velocity
mapped from time to depth is shown in Figure 2(b). There is a significant difference
between both the value and the shape of the velocity anomaly recovered by the Dix
method and the true anomaly. The difference is explained by taking into account
geometrical spreading of image rays. Figure 2(c) shows the velocity recovered by our
method and the corresponding family of image rays. An analogous 3-D example is
provided in (Cameron et al., 2007).

Field data example

Figure 3, taken from (Fomel, 2003), shows a prestack time migrated image from
the North Sea and the corresponding time-migration velocity obtained by velocity
continuation. The most prominent feature in the image is a salt body which causes
significant lateral variations of velocity. Figure 4 compares the Dix velocity converted
to depth with the interval velocity model recovered by our method. As in the syn-
thetic example, there is a significant difference between the two velocity caused by
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(a)

(b)

(c)

Figure 2: Synthetic test on interval velocity estimation. (a) Exact velocity model. (b)
Dix velocity converted to depth. (c) Estimated velocity model and the correspond-
ing image rays. The image ray spreading causes significant differences between Dix
velocity and estimated velocity.
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Figure 3: (a) Seismic image from North Sea obtained by prestack time migration using
velocity continuation (Fomel, 2003). (b) Corresponding time-migration velocity.
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(a)

(b)

Figure 4: Field data example of interval velocity estimation. (a) Dix velocity con-
verted to depth. (b) Estimated velocity model and the corresponding image rays.
The image-ray spreading causes significant differences between Dix velocity and true
velocity.

the geometrical spreading of image rays. The middle part of the velocity model may
not be recovered properly. The true structure should include a salt body visible in
the image. The inability of our method to recover it exactly shows the limitation
of the proposed approach in the areas of significant lateral velocity variations, which
invalidate the assumptions behind time migration (Robein, 2003). Figure 5 com-
pares three images: post-stack depth-migration image using Dix velocity, post-stack
depth-migration image using the velocity estimated by our method, and prestack
time-migration image converted to depth with our algorithm. The evident structural
improvements in Figure 5(b) in comparison with Figure 5(a), in particular near salt
flanks, and a good structural agreement between Figures 5(b) and 5(c) serve as an
indirect evidence of the algorithm success. An ultimate validation should come from
prestack depth migration velocity analysis, which is significantly more expensive.

CONCLUSIONS

We have applied the recently established theorem that the Dix velocity obtainable
from the time-migration velocity is the true interval velocity divided by the geomet-
rical spreading of image rays to pose the corresponding inverse problem. We have
suggested a set of numerical algorithms for solving the problem numerically. We have
tested these algorithms on a synthetic data example with laterally heterogeneous ve-
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(a)

(b)

(c)

Figure 5: Migrated images of the field data example. (a) Poststack migration using
Dix velocity. (b) Poststack migration using estimated velocity. (c) Prestack time
migration converted to depth with our algorithm.
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locity and demonstrated that they produce significantly better results than simple Dix
inversion followed by time-to-depth conversion. Moreover, the Dix velocity may qual-
itatively differ from the output velocity. We have also tested our algorithm on a field
data example and validated it by comparing prestack time migration image mapped
to depth with post-stack depth migrated images. Our approach is complementary to
velocity estimation methods that work directly in the depth domain. Therefore, it
can serve as an efficient first step in seismic velocity model building.
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