next up previous [pdf]

Next: About this document ... Up: Casasanta & Fomel: Velocity-independent Previous: Acknowledgments

Bibliography

Al-Dajani, A., and I. Tsvankin, 1998, Nonhyperbolic reflection moveout for horizontal transverse isotropy: Geophysics, 63, 1738-1753.

Alkhalifah, T., 1997, Velocity analysis using nonhyperbolic moveout in transversely isotropic media: Geophysics, 62, 1839-1854.

----, 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics, 63, 623-631.

----, 2000, An acoustic wave equation for anisotropic media: Geophysics, 65, 1239-1250.

Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media: Geophysics, 60, 1550-1566.

Bienati, N., and U. Spagnolini, 2001, Multidimensional wavefront estimation from differential delays: IEEE Trans. on Geoscience and Remote Sensing, 39, 655-664.

Burnett, W., and S. Fomel, 2009a, 3D velocity-independent elliptically anisotropic moveout correction: Geophysics, 74, WB129-WB136.

----, 2009b, Moveout analysis by time-warping: SEG Technical Program Expanded Abstracts, 28, 3710-3714.

Byun, B. S., D. Corrigan, and J. E. Gaiser, 1989, Anisotropic velocity analysis for lithology discrimination: Geophysics, 54, 1564-1574.

Casasanta, L., and S. Fomel, 2010, Velocity independent $ \tau $ -$ p$ moveout in layered VTI media: 72nd EAGE Conference & Exhibition, EAGE, Expanded Abstract C030.

Claerbout, J., 1992, Earth sounding analysis: Processing versus inversion: Blackwell.

Claerbout, J. F., 1978, Straightedge determination of interval velocity, in SEP-14: Stanford Exploration Project, 13-16.

de Bazelaire, E., 1988, Normal moveout revisited: Inhomogeneous media and curved interfaces: Geophysics, 53, 143-157.

Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68-86.

Douma, H., and M. van der Baan, 2008, Rational interpolation of qP-traveltimes for semblance-based anisotropy estimation in layered VTI media: Geophysics, 73, D53-D62.

Ferla, M., and P. Cibin, 2009, Interval anisotropic parameters estimation in a least squares sense -- application on congo mtpn real dataset: SEG Technical Program Expanded Abstracts, 28, 296-300.

Fomel, S., 2002, Applications of plane-wave desctruction filters: Geophysics, 67, 1946-1960.

----, 2004, On anelliptic approximations for qP velocities in VTI media: Geophysical Prospecting, 52, 247-259.

----, 2007a, Shaping regularization in geophysical estimation problems: Geophysics, 72, R29-R36.

----, 2007b, Velocity-independent time-domain seismic imaging using local event slopes: Geophysics, 72, S139-S147.

----, 2008, Nonlinear shaping regularization in geophysical inverse problems: SEG Technical Program Expanded Abstracts, 27, 2046-2051.

----, 2010, Predictive painting of 3d seismic volumes: Geophysics, 75, A25-A30.

Fomel, S., and A. Stovas, 2010, Generalized nonhyperbolic moveout approximation: Geophysics, 75, U9-U18.

Fowler, P. J., A. Jackson, J. Gaffney, and D. Boreham, 2008, Direct nonlinear traveltime inversion in layered VTI media: SEG Technical Program Expanded Abstracts, 27, 3028-3032.

Lambaré, G., 2008, Stereotomography: Geophysics, 73, VE25-VE34.

Lambaré, G., M. Alerini, R. Baina, and P. Podvin, 2003, Stereotomography : A fast approach for velocity macro-model estimation: SEG Technical Program Expanded Abstracts, 22, 2076-2079.

Lomask, J., A. Guitton, S. Fomel, J. Claerbout, and A. A. Valenciano, 2006, Flattening without picking: Geophysics, 71, P13-P20.

Ottolini, R., 1983, Velocity independent seismic imaging: Technical report, Stanfor Exploration Project.

Riabinkin, L. A., 1957, Fundamentals of resolving power of controlled directional reception (CDR) of seismic waves, in Slant-stack processing, 1991: Soc. of Expl. Geophys. (Translated and paraphrased from Prikladnaya Geofiizika, 16, 3-36), 36-60.

Rieber, F., 1936, A new reflection system with controlled directional sensitivity: Geophysics, 1, 97-106.

Roganov, Y., and A. Stovas, 2011, Caustics in a periodically layered transversely isotropic medium with vertical symmetry axis: Geophysical Prospecting, DOI: 10.1111/j.1365-2478.2010.00924.x.

Sil, S., and M. Sen, 2008, Azimuthal $ \tau $ -$ p$ analysis in anisotropic media: Geophysical Journal International, 175, 587-597.

Siliqi, R., and N. Bousquié, 2000, Anelliptic time processing based on a shifted hyperbola approach: SEG Technical Program Expanded Abstracts, 19, 2245-2248.

Siliqi, R., P. Herrmann, A. Prescott, and L. Capar, 2007, High-order RMO picking using uncorrelated parameters: SEG Technical Program Expanded Abstracts, 26, 2772-2776.

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56, 785-794.

Stovas, A., 2009, Direct Dix-type inversion in a layered VTI medium: SEG Technical Program Expanded Abstracts, 28, 2506-2510.

Stovas, A., and S. Fomel, 2010, The generalized non-elliptic moveout approximation in the $ \tau $ -$ p$ domain: SEG Technical Program Expanded Abstracts, 253-257.

Sword, C. H., 1987, Tomographic determination of interval velocities from reflection seismic data: The method of controlled directional reception: PhD thesis, Stanford University.

Taner, M. T., and F. Koehler, 1969, Velocity spectra--digital computer derivation applications of velocity functions: Geophysics, 34, 859-881.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954-1966.

Tsvankin, I., 1995, Normal moveout from dipping reflectors in anisotropic media: Geophysics, 60, 268-284.

----, 2006, Seismic signatures and analysis of reflection data in anisotropic media: Elsevier.

Tsvankin, I., J. Gaiser, V. Grechka, M. van der Baan, and L. Thomsen, 2010, Seismic anisotropy in exploration and reservoir characterization: An overview: Geophysics, 75, 75A15-75A29.

Ursin, B., and A. Stovas, 2006, Traveltime approximations for a layered transversely isotropic medium: Geophysics, 71, D23-D33.

van der Baan, M., 2004, Processing of anisotropic data in the tau-p domain: I--Geometric spreading and moveout corrections: Geophysics, 69, 719-730.

van der Baan, M., and J. M. Kendall, 2002, Estimating anisotropy parameters and traveltimes in the tau-p domain: Geophysics, 67, 1076-1086.

Wang, X., and I. Tsvankin, 2009, Estimation of interval anisotropy parameters using velocity-independent layer stripping: Geophysics, 74, WB117-WB127.

Wolf, K., D. Rosales, A. Guitton, and J. Claerbout, 2004, Robust moveout without velocity picking: SEG Technical Program Expanded Abstracts, 23, 2423-2426.

Yilmaz, O., 2000, Seismic data analysis: SEG.

Appendix A

Local plane-waves operators

Local plane-wave operators model seismic data (Fomel, 2002) . The mathematical basis is the local plane differential equation

$\displaystyle \frac{\partial P}{\partial x} + \sigma \frac{\partial P}{\partial t} = 0\;,$ (29)

where $ P(t,x)$ is the wave field and $ \sigma$ the local slope field (Claerbout, 1992). In the case of a constant slope, the solution of equation A-1 is a simple plane wave $ P(t,x) = f(t - \sigma x)$ where $ f(t)$ is an arbitrary waveform. Assuming that the slope $ \sigma=\sigma(t,x)$ varies in time and space, one can design a local operator to propagate each trace to its neighbors. Let $ \mathbf{s}$ represent a seismic section as a collection of traces: $ \mathbf{s} =
\left[\mathbf{s}_1 \; \mathbf{s}_2 \; \ldots \;
\mathbf{s}_N\right]^T$ , where $ \mathbf{s}_k$ corresponds to $ P(t,x_k)$ for $ k=1,2,\ldots$ A plane-wave destruction operator (PWD) effectively predicts each trace from its neighbor and subtracts the prediction from the original trace (Fomel, 2002). In linear operator notation, the plane-wave destruction operation can be defined as

$\displaystyle \mathbf{r} = \mathbf{D(\sigma) s}\;,$ (30)

where $ \mathbf{r}$ is the destruction residual, and $ \mathbf{D}$ is the destruction operator defined as

$\displaystyle \mathbf{D}(\sigma) = \left[\begin{array}{ccccc} \mathbf{I} & 0 & ...
...0 & \cdots & - \mathbf{P}_{N-1,N}(\sigma) & \mathbf{I}  \end{array}\right]\;,$ (31)

where $ \mathbf{I}$ stands for the identity operator, and $ \mathbf{P}_{i,j}(\sigma)$ describes prediction of trace $ j$ from trace $ i$ . Prediction of a trace consists of shifting the original trace along dominant event slopes $ \sigma$ . The dominant slopes are estimated by minimizing the prediction residual $ \mathbf{r}$ in a least-squares sense. Since the prediction operators A-3 depends on the slopes themselves, the inverse problem is nonlinear and must be solved in a iterative fashion by subsequent linearizations. We employ shaping regularization (Fomel, 2007a) for controlling the smoothness of the estimated slope field.

Once the local slope field $ \sigma$ has been computed, prediction of a trace from a distant neighbor can be accomplished by simple recursion. Predicting trace $ k$ from trace $ 1$ is

$\displaystyle \mathbf{P}_{1,k} = \mathbf{P}_{k-1,k}  \cdots \mathbf{P}_{2,3} \mathbf{P}_{1,2}\;.$ (32)

If $ \mathbf{s}_r$ is a reference trace, then the prediction of trace $ \mathbf{s}_k$ is $ \mathbf{P}_{r,k} \mathbf{s}_r$ . Fomel (2010) called the recursive operator $ \mathbf{P}_{r,k}$ predictive painting. The elementary prediction operators in equation A-3 spread information from a given trace to its neighbors recursively by following the local structure of seismic events. Figure 7 in the main text illustrates the painting concept.

Appendix B

Mathematical derivation of slope-based Dix inversion

The Dix formula (Dix, 1955) can be written in the differential form

$\displaystyle \hat{\mu}=\frac{d}{{d\tau _{0}}}\left[ {\tau _{0}\mu (\tau _{0})}\right] ,$ (33)

where $ \hat{\mu}$ is the interval parameter corresponding to zero-slope time $ {\tau
_{0}}$ and $ {\mu (\tau _{0})}$ is the vertically-variable general effective parameter. Using the chain rule, we rewrite the Dix's formula B-1 as follows:

$\displaystyle \hat{\mu}=\frac{d}{{d\tau }}\left[ {\tau _{0}(\tau )\mu (\tau )}\...
...] <tex2html_comment_mark>476 \left[ \frac{d{\tau }_{0}}{{d\tau }}\right] ^{-1}.$ (34)

At first, let us consider the VTI NMO velocity as an effective parameter, hence $ {\mu =}V_{N}^{2}$ . Using the expression for $ {\tau _{0}(\tau
)}$ (equation 15) and $ V_{N}^{2}{(\tau )}$ (equation 16), we obtain, after some algebra,

$\displaystyle \frac{{d\tau _{0}}}{{d\tau }}=\frac{1}{{2\tau _{0}}}\frac{{\tau (2ND+\tau (N_{\tau }D-D_{\tau }N))}}{{D^{2}}},$ (35)

$\displaystyle \frac{{d\left[ {\tau _{0}(\tau )V_{N}^{2}(\tau )}\right] }}{{d\ta...
...{\tau }-\tau DRN_{\tau }-3\tau NRD_{\tau }+4DNR}\right] }}{{pD^{3}N\tau _{0}}},$ (36)

where $ {R_{\tau }=}\partial {R/}\partial \tau $  ,  $ {Q_{\tau }=}\partial {Q/}\partial \tau $ and

$\displaystyle N_{\tau }=\partial N/\partial \tau =\left( {3\tau -6pR}\right) R_{\tau }+p\tau Q_{\tau }+3R+pQ,$ (37)

$\displaystyle D_{\tau }=\partial D/\partial \tau =\left( {3\tau +2pR}\right) R_{\tau }+p\tau Q_{\tau }+3R+pQ.$ (38)

Inserting equation B-3 and B-4 in B-2 leads to

$\displaystyle \hat{V}_{N}=-\frac{{16\tau R^{2}}}{{pDN}}\frac{{\left[ {6\tau DNR...
...{\tau }+4DNR}\right] }}{{\left[ {2ND+\tau N_{\tau }D-\tau D_{\tau }N}\right] }}$ (39)

.

To compute the interval $ \hat{V}_H$ or $ \hat{\eta}$ , we employ as effective value $ {\mu =}S$ $ V_{N}^{4}$ as described in equation 10. In this case, the modified Dix formula (equation B-2) can be rewritten as follows

$\displaystyle \hat{S}=\frac{1}{{\hat{V}_{N}^{4}(\tau )}}\frac{d}{{d\tau }}\left...
...au )V_{N}^{4}(\tau )}\right] \left[ \frac{d{\tau }_{0}}{{d\tau }}\right] ^{-1},$ (40)

which, after substituting the chain relation for the interval $ {\hat{V}_{N}^{2}(\tau )=}\frac{{d\left[ {\tau _{0}(\tau
)V_{N}^{2}(\tau )}\right] }}{{d\tau }}\left[ \frac{d{\tau
}_{0}}{{d\tau }}\right] ^{-1}$ and some simplifications, leads to the relation

$\displaystyle \hat{S}={S(\tau )}\frac{{V_{N}^{2}(\tau )}}{{\hat{V}_{N}^{2}(\tau...
...] \left[ \frac{d{\tau }_{0}}{{<tex2html_comment_mark>480 d\tau }}\right] ^{-1},$ (41)

which involves only the mapping relations for the zero-slope time $ \tau_{0}(\tau)$ (formula 15) effective NMO velocity $ V_{N}^{2}(\tau )$ (formula 16), and the anellipticity parameter obtained by equation 18 as $ S(\tau )=1+8\eta (\tau )$ . From the interval parameter $ \hat{S}$ , we can go back to interval $ \hat{V}_{H}^{2}=\hat{V}_{N}^{2} (\hat{S}+3)/4$ and $ \hat{\eta}=(\hat{S}-1)/8$ .

In the case of isotropy or elliptical anisotropy ( $ \hat{V}_{N}=\hat{V}_{H}$ ), equations B-3 and B-4 simplify to

$\displaystyle \frac{{d\tau _{0}}}{{d\tau }}=\frac{{2\tau -p(R+\tau R_{\tau })}}{{2\tau _{0}<tex2html_comment_mark>481 }},$ (42)

$\displaystyle \frac{{d\left[ {\tau _{0}(\tau )V_{N}^{2}(\tau )}\right] }}{{d\ta...
...}{2}\frac{{pR(R+\tau R_{\tau })-2R_{\tau }\tau ^{2}}}{{\tau _{0}p(pR-\tau )}}%
$ (43)

Inserting equations B-10 and B-11 in formula B-2, we get

$\displaystyle \hat{V}_{N}=\frac{1}{{p(pR-\tau )}}\frac{{pR(R+\tau R_{\tau })-2R_{\tau }\tau ^{2}}}{{{2\tau -p(R+\tau R_{\tau })}}}.$ (44)

This equation is the analog of equation 15 in (Fomel, 2008).

Appendix C

Mathematical derivation of stripping equations

Starting from the integral representation of $ \tau $ -$ p$  signature in equation 7, we arrive at the expression of the slope $ R$ and the curvature $ Q$ fields as the following integrals:

$\displaystyle R (\tau_{0},p)$ $\displaystyle =$ $\displaystyle \int\limits_{0}^{\tau _{0}}\mathcal{F'}(p,\xi)d\xi ,$ (45)
$\displaystyle Q (\tau_{0},p)$ $\displaystyle =$ $\displaystyle \int\limits_{0}^{\tau _{0}}\mathcal{F''}(p,\xi)d\xi ,$ (46)

where

$\displaystyle \mathcal{F}(\tau_{0},p)=\sqrt{\frac{1-\hat{V}_{H}^{2}(\tau_{0})p^{2}}{1-[\hat{V}_{H}^{2}(\tau_{0} )-\hat{V}_{N}^{2}(\tau_{0} )]p^{2}}}\;,
$

$ \mathcal{F'}=\frac{d\mathcal{F}}{dp}$ and $ \mathcal{F''}=\frac{d^2\mathcal{F}}{dp^2}$ . According to equation 7, it descends that

$\displaystyle \tau_{0,\tau} (\tau ,p) =\left[ \dfrac{\partial \tau_{0}}{\partial \tau}\right] ^{-1} =\dfrac{1}{\mathcal{F}(p,\tau)}.$ (47)

Therefore, applying the chain rule

$\displaystyle \dfrac{\partial }{\partial \tau} = \left[ \dfrac{\partial \tau}{\...
...l \tau_{0}}=\dfrac{1}{\mathcal{F}(\tau,p)}\dfrac{\partial}{ \partial \tau_{0}},$ (48)

we obtain
$\displaystyle R_{\tau}(\tau ,p)$ $\displaystyle =$ $\displaystyle \dfrac{1}{\mathcal{F}(\tau,p)} \dfrac{\partial R}{\partial \tau_0} =\dfrac{\mathcal{F'}(\tau ,p)}{\mathcal{F}(\tau ,p)}\;,$ (49)
$\displaystyle Q_{\tau}(\tau ,p)$ $\displaystyle =$ $\displaystyle \dfrac{1}{\mathcal{F}(\tau,p)}\dfrac{\partial Q}{\partial \tau_0} =\dfrac{\mathcal{F''}(\tau, p)}{\mathcal{F}(\tau ,p)}\;.$ (50)

Solving equations C-5 and C-6 for $ \hat{V}_N$ and $ \hat{V}_H$ leads to the stripping equations 24 and 25 in the main text. Alternatively, if we replace the $ \tau $ derivative of the curvature (equation C-4 ) with the squared derivative of the zero-slope traveltime $ \tau^2_{0,\tau}$ (equation C-2 ) and solve again for $ \hat{V}_N$ and $ \hat{V}_H$ , we obtain Fowler's equations 27 and 28 in the main text.

Note that no approximations were made here, other than Alkhalifah's acoustic approximation in equation 7. In the case of isotropic or elliptical anisotropy ( $ \hat{V}_{N}=\hat{V}_{H}$ ), one can just solve equation C-5 for $ \hat{V}_{N}$ obtaining equation 23 in the main text.


next up previous [pdf]

Next: About this document ... Up: Casasanta & Fomel: Velocity-independent Previous: Acknowledgments

2011-06-25