next up previous [pdf]

Next: About this document ... Up: Fomel: Shaping regularization Previous: Acknowledgments

Bibliography

Bube, K., and R. Langan, 1999, On a continuation approach to regularization for crosswell tomography: 69th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1295-1298.

Claerbout, J., and M. Brown, 1999, Two-dimensional textures and prediction-error filters: 61st Mtg., Eur. Assn. Geosci. Eng., Session:1009.

Claerbout, J. F., 1992, Earth Soundings Analysis: Processing Versus Inversion: Blackwell Scientific Publications.

----, 2006, Basic Earth imaging: Stanford Exploration Project, http://sepwww.stanford.edu/sep/prof/.

Clapp, R. G., B. Biondi, and J. F. Claerbout, 2004, Incorporating geologic information into reflection tomography: Geophysics, 69, 533-546.

Clapp, R. G., B. L. Biondi, S. B. Fomel, and J. F. Claerbout, 1998, Regularizing velocity estimation using geologic dip information: 68th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1851-1854.

Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68-86.

Engl, H., M. Hanke, and A. Neubauer, 1996, Regularization of inverse problems: Kluwer Academic Publishers.

Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67, 1946-1960.

----, 2003, Time-migration velocity analysis by velocity continuation: Geophysics, 68, 1662-1672.

Fomel, S., and J. Claerbout, 2003, Multidimensional recursive filter preconditioning in geophysical estimation problems: Geophysics, 68, 577-588.

Fomel, S., and A. Guitton, 2006, Regularizing seismic inverse problems by model re-parameterization using plane-wave construction: Geophysics, 71, S209-S217.

Fomel, S., P. Sava, J. Rickett, and J. Claerbout, 2003, The Wilson-Burg method of spectral factorization with application to helical filtering: Geophysical Prospecting, 51, 409-420.

Harlan, W. S., 1995, Regularization by model redefinition:
http://billharlan.com/pub/papers/regularization.pdf.

Hestenes, M. R., and E. Steifel, 1952, Methods of conjugate gradients for solving linear systems: J. Res. Nat. Bur. Stand., 49, 409-436.

Jackson, D. D., 1972, Interpretation of inaccurate, insufficient and inconsistent data: Geophys. J. R. Astron. Soc., 28, 97-109.

Liu, B., and M. Sacchi, 2001, Minimum weighted norm interpolation of seismic data with adaptive weights: 71st Ann. Internat. Mtg, Soc. of Expl. Geophys., 1921-1924.

Portniaguine, O., and J. Castagna, 2004, Inverse spectral decomposition, in 74th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1786-1789.

Saad, Y., 2003, Iterative methods for sparse linear systems: SIAM.

Sinoquet, D., 1993, Modeling a priori information on the velocity field in reflection tomography: 63rd Ann. Internat. Mtg, Soc. of Expl. Geophys., 591-594.

Tarantola, A., 2004, Inverse problem theory and methods for model parameter estimation: SIAM.

Tikhonov, A. N., 1963, Solution of incorrectly formulated problems and the regularization method: Sovet Math. Dokl., 1035-1038.

Trad, D., T. Ulrych, and M. Sacchi, 2003, Latest views of the sparse Radon transform: Geophysics, 68, 386-399.

Valenciano, A. A., M. Brown, A. Guitton, and M. D. Sacchi, 2004, Interval velocity estimation using edge-preserving regularization, in 74th Ann. Internat. Mtg: Soc. of Expl. Geophys.

van der Vorst, H. A., 2003, Iterative Krylov methods for large linear systems: Cambridge University Press.

Versteeg, R., and W. W. Symes, 1993, Geometric constraints on seismic inversion: 63rd Ann. Internat. Mtg, Soc. of Expl. Geophys., 595-598.

Woodward, M. J., P. Farmer, D. Nichols, and S. Charles, 1998, Automated 3-D tomographic velocity analysis of residual moveout in prestack depth migrated common image point gathers: 68th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1218-1221.

Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems: Elsevier Science.

Zhou, H., S. Gray, J. Young, D. Pham, and Y. Zhang, 2003, Tomographic residual curvature analysis: The process and its components: 73rd Ann. Internat. Mtg., Soc. of Expl. Geophys., 666-669.

Appendix A

Conjugate-gradient algorithm

A complete algorithm for conjugate-gradient iterative inversion with shaping regularization is given below. The algorithm follows directly from combining equation 13 with the classic conjugate-gradient algorithm of Hestenes and Steifel (1952).


\begin{algorithm}{Conjugate gradients with shaping}{\mathbf{L},\mathbf{H},\mathb...
...ight] \\
\hat{\rho} \= \rho
\end{FOR} \\
\RETURN \mathbf{m}
\end{algorithm}

The iteration terminates after $N$ iterations or upon reaching convergence to the specified tolerance $tol$. It uses auxiliary vectors $\mathbf{p}$, $\mathbf{r}$, $\mathbf{s}_p$, $\mathbf{s}_m$, $\mathbf{s}_r$, $\mathbf{g}_p$, $\mathbf{g}_m$, $\mathbf{g}_r$ and applies operators $\mathbf{L}$, $\mathbf {H}$ and their adjoints only once per each iteration.

Appendix B

Combining shaping operators

General rules can be developed to combine two or more shaping operators for the cases when there are several features in the model that need to be characterized simultaneously. A general rule for combining two different shaping operators $\mathbf{S}_1$ and $\mathbf{S}_2$ can have the form

\begin{displaymath}
\mathbf{S}_{12} =
\mathbf{S}_{1} + \mathbf{S}_{2} -
\mathbf{S}_{1}\,\mathbf{S}_{2}\;,
\end{displaymath} (21)

where one adds the responses of the two shapers and then subtracts their overlap. An example is shown in Figure B-1, where an impulse response for oriented smoothing in two different directions is constructing from smoothing in each of the two directions separately.

test12
Figure B-1.
Impulse response for a combination of two shaping operators smoothing in two different directions.
test12
[pdf] [png] [scons]

Combining two operators that work in orthogonal directions can be accomplished with a simple tensor product, as follows:

\begin{displaymath}
\mathbf{S}_{xy} = \mathbf{S}_{x}\,\mathbf{S}_{y}\;,
\end{displaymath} (22)

where $\mathbf{S}_{x}$ and $\mathbf{S}_{y}$ are shaping operators that apply in orthogonal $x$- and $y$-directions, and $\mathbf{S}_{xy}$ is a combined operator that works in both directions. An example is shown in Figure B-2, where two two-dimensional shapers working in orthogonal directions are combined to produce an impulse response of 3-D shaping operator that applies smoothing along a three-dimensional plane.

plane
Figure B-2.
3-D impulse response for a combination of two 2-D shaping operators smoothing in in-line and cross-line directions.
plane
[pdf] [png] [scons]

Constructing multidimensional recursive filters for helical preconditioning (Fomel and Claerbout, 2003) is significantly more difficult. It involves helical spectral factorization, which may create long inefficient filters (Fomel et al., 2003).


next up previous [pdf]

Next: About this document ... Up: Fomel: Shaping regularization Previous: Acknowledgments

2013-07-26