next up previous [pdf]

Next: Cauchy problem for elliptic Up: Partial differential equations for Previous: 2-D case

3-D case

Equation 11 can be rewritten in the following form

$\displaystyle v=\sqrt[4]{\det\mathbf{F}(\det\mathbf{Q})^2},$ (17)

where $ \mathbf{F}$ is the left-hand side of equation 11. As in 2-D, we rewrite system 9 in the time-domain coordinates $ (\mathbf{x}_0,t_0)$ . Then we get
$\displaystyle \mathbf{Q}_{t_0}$ $\displaystyle =$ $\displaystyle v^2\mathbf{P},$ (18)
$\displaystyle \mathbf{P}_{t_0}$ $\displaystyle =$ $\displaystyle -\frac{1}{v}\mathbf{Q}^{-1}\left[
\nabla\left(\mathbf{Q}^{-1}\nabla v\right)^T\right]\mathbf{Q},$ (19)

where $ v$ is given by equation 17, and the gradients are taken with respect to $ \mathbf{x}_0$ . Then the PDE for $ \mathbf{Q}$ is

$\displaystyle \left(\frac{1}{v^2}\mathbf{Q}_{t_0}\right)_{t_0}= -\frac{1}{v}\mathbf{Q}^{-1}\left[ \nabla\left(\mathbf{Q}^{-1}\nabla v\right)^T\right]\mathbf{Q}.$ (20)

The initial conditions are $ \mathbf{Q}(\mathbf{x}_0,0)=\mathbf{I}_2$ , $ \mathbf{Q}_{t_0}(\mathbf{x}_0,0)=\mathbf{0}$ . The required input $ \sqrt{\det\mathbf{F}}$ is well-approximated by the squares of the Dix velocity obtained from the 3-D prestack time migration. We emphasize that despite the fact that $ \mathbf{Q}$ is a matrix in 3-D, scalar data are enough for its computation.


next up previous [pdf]

Next: Cauchy problem for elliptic Up: Partial differential equations for Previous: 2-D case

2013-07-26