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ABSTRACT

This tutorial is written for beginners as an introduction to basic wave propagation
using finite difference method, from acoustic and elastic wave modeling, to reverse
time migration and full waveform inversion. Most of the theoretical delineations
summarized in this tutorial have been implemented in Madagascar with Matlab,
C and CUDA programming, which will benefit readers’ further study.

BASIC WAVE EQUATION

Define x = (x, y, z), time t, the s-th energy source function S̃(x, t; xs), pressure
p(x, t; xs), particle velocity v(x, t), material density ρ(x), the bulk modulus κ(x).
Now we have

• Newton’s law

ρ(x)
∂v(x, t; xs)

∂t
= ∇p(x, t; xs). (1)

• Constitutive law

1

κ(x)

∂p(x, t; xs)

∂t
= ∇ · v(x, t; xs) + S̃(x, t; xs). (2)

Acoustic wave equation

Acoustics is a special case of fluid dynamics (sound waves in gases and liquids) and
linear elastodynamics. Note that elastodynamics is a more accurate representation
of earth dynamics, but most industrial seismic processing based on acoustic model.
Recent interest in quasiacoustic anisotropic approximations to elastic P-waves.

Assume S̃(x, t; xs) is differentiable constitutive law w.r.t. time t. Substituting Eq.
(2) into the differentiation of Eq. (1) gives

1

κ(x)

∂2p(x, t; xs)

∂t2
= ∇ ·

(
1

ρ(x)
∇p(x, t; xs)

)
+
∂S̃(x, t; xs)

∂t
. (3)
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We introduce v(x) =
√
κ(x)/ρ(x) (compressional p-wave velocity):

1

v2(x)

∂2p(x, t; xs)

∂t2
= ρ(x)∇ ·

(
1

ρ(x)
∇p(x, t; xs)

)
+ ρ(x)

∂S̃(x, t; xs)

∂t
(4)

Under constant density condition, we obtain the 2nd-order equation

1

v2(x)

∂2p(x, t; xs)

∂t2
= ∇2p(x, t; xs) + fs(x, t; xs) (5)

where ∇2 = ∇ · ∇ = ∂2

∂x2 + ∂2

∂z2
, fs(x, t; xs) = ρ(x)∂S̃(x,t;xs)

∂t
. In 2D case, it is

∂2p(x, t; xs)

∂t2
= v2(x)

(
∂2p(x, t; xs)

∂z2
+
∂2p(x, t; xs)

∂x2

)
+ fs(x, t; xs). (6)

A shot of acoustic wavefield obtained at t=0.35s with 4-th order finite difference
scheme and the sponge absorbing boundary condition is shown in Figure 1, where the
source is put at the center of the model. For 3D, it becomes

∂2p(x, t; xs)

∂t2
= v2(x)

(
∂2p(x, t; xs)

∂z2
+
∂2p(x, t; xs)

∂x2
+
∂2p(x, t; xs)

∂y2

)
+fs(x, t; xs) (7)

Similarly, we put the source at the center of a 3D volume (size=100x100x100), per-
formed the modeling for 300 steps in time and recorded the corresponding wavefield
at kt=250, see Figure 2.

The above spatial operator is spatially homogeneous. This isotropic formula is
simple and easy to understand, and becomes the basis for many complicated general-
izations in which the anisotropy may come in. In 2D case, the elliptically-anisotropic
wave equation reads

∂2p(x, t; xs)

∂t2
= v2

1(x)
∂2p(x, t; xs)

∂z2
+ v2

2(x)
∂2p(x, t; xs)

∂x2
+ fs(x, t; xs) (8)

Here, I use the Hess VTI model shown in Figure 3a and Figure 3b. We perform
1000 steps of modeling with time interval ∆t = 0.001s, and capture the wavefield at
t = 0.9s, as shown in Figure 4.

Elastic wave equation

In elastic wave equation, the modulus κ(x) corresponds to two Lame parameters:
λ+ 2µ = ρv2

p and u = ρv2
s , in which vp and vs denote the P- and S-wave velocity. The
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Figure 1: A snap of acoustic wavefield obtained at t=0.35s with 4-th order finite
difference scheme and the sponge absorbing boundary condition.

Figure 2: A wavefield snap recorded at kt=250, 300 steps modeled.
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(a) (b)

Figure 3: Two velocity components of Hess VTI model

Figure 4: Wavefield at kt = 0.9s, 1000 steps of modeling with time interval ∆t =
0.001s performed.
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elastic wave equation can be written as

∂vx
∂t

=
1

ρ
(
∂τxx
∂x

+
∂τxz
∂x

)

∂vz
∂t

=
1

ρ
(
∂τzx
∂z

+
∂τzz
∂z

)

∂τxx
∂t

= (λ+ 2µ)
∂vx
∂x

+ λ
∂vz
∂z

∂τzz
∂t

= λ
∂vx
∂x

+ (λ+ 2µ)
∂vz
∂z

∂τxz
∂t

= µ
∂vx
∂x

+ µ
∂vz
∂z

(9)

where τij (sometimes σij) is stress, vi is particle velocity, i, j = x, z. We display
the 2 components of elastic wave propagation at kt = 270, nt = 300 modeled with
∆t = 0.001 in Figure 5, in which the grid size is 200x200, the spatial interval is
∆x = ∆z = 5m, and the velocities are chosen to be V p = 2km/s, V s = V p/

√
2.

Figure 5: Two components of elastic wave propagation at kt = 270, nt = 300 modeled
with ∆t = 0.001. Grid size=200x200,∆x = ∆z = 5m, V p = 2km/s, V s = V p/

√
2

FORWARD MODELING

Taylor and Páde expansion

The Taylor expansion of a function f(x+ h) at x is written as

f(x+ h) = f(x) +
∂f(x)

∂x
h+

1

2!

∂2f(x)

∂x2
h2 +

1

3!

∂3f(x)

∂x3
h3 + . . . . (10)

A popular example is

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 + . . .+

α(α− 1) · · · (α− n+ 1)

n!
xn + . . . . (11)
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Here we mainly consider the following expansion formula:

(1− x)
1
2 = 1− 1

2
x− 1

8
x2 − 1

16
x3 − 5

128
x4 − . . . , |x| < 1. (12)

The Páde expansion of Eq. (12) follows from expansion in continuous fractions:

(1− x)
1
2 = 1− x/2

1− x/4

1−x/4
...

(13)

I provide an informal derivation:

y = (1− x)
1
2 ⇒ x = 1− y2 = (1− y)(1 + y)⇒ 1− y =

x

1 + y

y = 1− x

1 + y
= 1− x

1 + (1− x
1+y

)
= 1− x/2

1− x/2
1+y

= 1− x/2

1− x/2
2− x

1+y

= 1− x/2

1− x/4

1− x/2
1+y

= . . .

The 1st-order Pade expansion is:

(1− x)
1
2 = 1− x

2
(14)

The 2nd-order Pade expansion is:

(1− x)
1
2 = 1− x/2

1− x
4

. (15)

And the 3rd-order one is:

(1− x)
1
2 = 1− x/2

1− x/4
1−x

4

. (16)

Approximate the wave equation

The innovative work was done by John Claerbout, and is well-known as 15◦ wave
equation to separate the up-going and down-going waves (Claerbout, 1971, 1986).

Eliminating the source term, the Fourier transform of the scalar wave equation
(Eq. (5)) can be specified as:

ω2

v2
= k2

x + k2
z . (17)

The down-going wave equation in Fourier domain is

kz =

√
ω2

v2
− k2

x =
ω

v

√
1− v2k2

x

ω2
. (18)
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Using the different order Pade expansions, we have:

1st− order :kz =
ω

v

(
1− v2k2

x

2ω2

)
2nd− order :kz =

ω

v

(
1−

2v2k2
x

ω2

4− v2k2
x

ω2

)

3rd− order :kz =
ω

v

(
1−

v2k2
x

2ω2 − v4k4
x

8ω4

1− v2k2
x

2ω2

)

4th− order :kz =
ω

v

(
1−

v2k2
x

2ω2 − v4k4
x

4ω4

1− 3v2k2
x

4ω2 + v4k4
x

16ω4

)
(19)

The corresponding time domain equations are:

1st− order :
∂2p

∂t ∂z
+
v

2

∂2p

∂x2
− 1

v

∂2p

∂t2
= 0, (the well− known 15◦wave equation)

2nd− order :
∂3p

∂t2∂z
− v2

4

∂3p

∂x2∂z
− 1

v

∂3p

∂t3
+

3v

4

∂3p

∂x2∂t
= 0, (45◦wave equation)

3rd− order :
∂4p

∂t3∂z
− v2

2

∂4p

∂x2∂t∂z
− 1

v

∂4p

∂t4
+ v

∂4p

∂x2∂t2
− v3

8

∂4p

∂x4
= 0

4th− order :
∂5p

∂t4∂z
− 3v2

4

∂5p

∂x2∂t2∂z
− v4

16

∂5p

∂x4∂z
+

1

v

∂5p

∂t5
+

5v

4

∂5p

∂x2∂t3
+

5v3

16

∂5p

∂t∂x4
= 0

(20)

Absorbing boundary condition (ABC)

Clayton-Enquist boundary condition

To simulate the wave propagation in the infinite space, the absorbing boundary con-
dition (ABC), namely the proximal approximation (PA) boundary condition, was
proposed in Clayton and Engquist (1977) and Engquist and Majda (1977). The ba-
sic idea is to use the wave equation with opposite direction at the boundary. Take
the bottom boundary as an example. Here, allowing for the incident wave is down-
going, we use the up-going wave equation at the bottom boundary. Using a model
including 3 layers (Figure 6), Figure 7 displays 10 shots data volume obtained the
Clayton-Enquist boundary condition.

Sponge ABC

The sponge ABC was proposed by Cerjan et al. (1985). The principle is very simple:
attenuating the refections exponentially in the extended artificial boundary (Figure 8)
area by multiplying a factor less d(u) than 1. Commonly, we use the factor

d(u) = exp(−[0.015 ∗ (nb− i)]2), u = x, z(i∆x or i∆z) (21)
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Figure 6: Velocity model: 3 layers

Figure 7: 10 shots data volume obtained using the Clayton-Enquist boundary condi-
tion.
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where nb is the thickness of the artificial boundary on each side of the model. Usually,
we choose it to be nb = 20 ∼ 30. The sponge ABC can be easily applied to a wide
range of wave propagation problems, including some governing wave equations for
complicated medium.

A1

A2 A3

A4

B1

B2 B3

B4

d(x) 6= 0 d(x) 6= 0

d(z) 6= 0

d(z) 6= 0

Figure 8: A schematic diagram of extended artificial boundary area. A1A2A3A4 is
the original model zone, which is extended to be B1B2B3B4 with artificial boundary.
In the extended bounary area, the attenuation coeffcient d(u) 6= 0; In the model zone
A1A2A3A4, d(u) = 0, u = x, z.

Perfectly Matched Layer (PML)

The PML ABC was proposed in electromagnetics computation (Berenger, 1994). In
seismic wave propagration community, two versions of PML boundary condition have
been developed: the split PML (SPML) and nonsplit PML (NPML).



Pengliang Yang 10 Primer for wave propagation

Split PML (SPML) for acoustics

It is possible for us to split the wave field into two components: x-component px and
z-component pz (Carcione et al., 2002). Then the acoustic wave equation becomes

p =px + pz
∂px
∂t

=v2∂vx
∂x

∂pz
∂t

=v2∂vz
∂z

∂vx
∂t

=
∂p

∂x
∂vz
∂t

=
∂p

∂z

(22)

To absorb the boundary reflection, by adding the decaying coefficients d(u) the SPML
governing equation can be specified as (Collino and Tsogka, 2001)

p = px + pz
∂px
∂t

+ d(x)px = v2∂vx
∂x

∂pz
∂t

+ d(z)pz = v2∂vz
∂z

∂vx
∂t

+ d(x)vx =
∂p

∂x
∂vz
∂t

+ d(z)vz =
∂p

∂z

(23)

where d(x) and d(z) are the ABC coefficients designed to attenuate the reflection in
the boundary zone, see Figure 8. There exists many forms of ABC coefficients func-
tion. In the absorbing layers, we use the following model for the damping parameter
d(x) (Collino and Tsogka, 2001):

d(u) = d0(
u

L
)2, d0 = − 3v

2L
ln(R), u = x, z (24)

where L indicates the PML thinkness; x represents the distance between current
position (in PML) and PML inner boundary. R is always chosen as 10−3 ∼ 10−6.
It is important to note that the same idea can be applied to elastic wave equation
(Collino and Tsogka, 2001). The split version of wave equation is very suitable for the
construction of seismic Poynting vector. A straightforward application is the angle
gather extration using Poynting vector, see Section .

A numerical example of SPML using 8th order staggered finite difference scheme
is given in Figure 9.
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Figure 9: Wavefield snap of SPML with 8th order finite difference

Nonsplit Convolutional-PML (CPML) for acoustics

Another approach to improve the behavior of the discrete PML at grazing incidence
consists in modifying the complex coordinate transform used classically in the PML
to introduce a frequency-dependent term that implements a Butterworth-type filter
in the layer. This approach has been developed for Maxwells equations named convo-
lutional PML (CPML) (Roden and Gedney, 2000) or complex frequency shifted-PML
(CFS-PML). The key idea is that for waves whose incidence is close to normal, the
presence of such a filter changes almost nothing because absorption is already almost
perfect. But for waves with grazing incidence, which for geometrical reasons do not
penetrate very deep in the PML, but travel there a longer way in the direction parallel
to the layer, adding such a filter will strongly attenuate them and will prevent them
from leaving the PML with significant energy .

Define Ax = ∂p
∂x

, Az = ∂p
∂z

. Then the acoustic wave equation reads

∂2p

∂t2
= v2

(
∂Ax

∂x
+
∂Az

∂z

)
.

To combine the absorbing effects into the acoustic equation, we merely need to com-
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bine two convolution terms into the above equations:

∂2p

∂t2
= v2 (Px+ Pz)

Px =
∂Ax

∂x
+ Ψx

Pz =
∂Az

∂z
+ Ψz

Ax =
∂p

∂x
+ Φx

Az =
∂p

∂z
+ Φz

(25)

where Ψx, Ψz are the convolution terms of Ax and Az; Φx, Φz are the convolution
terms of Px and Pz. These convolution terms can be computed via the following
relation: 

Ψn
x = bxΨ

n−1
x + (bx − 1)∂n−1/2

x Ax

Ψn
z = bzΨ

n−1
z + (bz − 1)∂n−1/2

z Az

Φn
x = bxΦ

n−1
x + (bx − 1)∂n−1/2

x P

Φn
z = bzΦ

n−1
z + (bz − 1)∂n−1/2

z P

(26)

where bx = e−d(x)∆t and bz = e−d(z)∆t. More details about the derivation of C-PML,
the interested readers are referred to Collino and Tsogka (2001) and Komatitsch and
Martin (2007).

Nonsplit PML (NPML) for elastics

The nonsplit PML for elastic implementation is

ρ
∂vx
∂t

= (
∂τxx
∂x

+
∂τxz
∂z

)− Ωxx − Ωxz

ρ
∂vz
∂t

= (
∂τxz
∂x

+
∂τzz
∂z

)− Ωzx − Ωzz

∂τxx
∂t

= (λ+ 2µ)
∂vx
∂x

+ λ
∂vz
∂z
− (λ+ 2µ)Ψxx − λΨzz

∂τzz
∂t

= λ
∂vx
∂x

+ (λ+ 2µ)
∂vz
∂z
− λΨxx − (λ+ 2µ)Ψzz

∂τxz
∂t

= µ
∂vx
∂x

+ µ
∂vz
∂z
− µΨzx − µΨxz

(27)
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where the auxiliary variables are governed via the following relation

∂Ωxx

∂t
+ d(x)Ωxx = d(x)

∂τxx
∂x

,
∂Ωxz

∂t
+ d(z)Ωxz = d(z)

∂τxz
∂z

∂Ωzx

∂t
+ d(x)Ωzx = d(x)

∂τxz
∂x

,
∂Ωzz

∂t
+ d(z)Ωzz = d(z)

∂τzz
∂z

∂Ψxx

∂t
+ d(x)Ψxx = d(x)

∂vx
∂x

,
∂Ψxz

∂t
+ d(z)Ψxz = d(z)

∂vx
∂z

∂Ψzx

∂t
+ d(x)Ψzx = d(x)

∂vz
∂x

,
∂Ψzz

∂t
+ d(z)Ψzz = d(z)

∂vz
∂z

(28)

Discretization

The Taylor series expansion of a function f(x) can be written as
f(x+ h) = f(x) +

∂f(x)

∂x
h+

1

2!

∂2f(x)

∂x2
h2 +

1

3!

∂3f(x)

∂x3
h3 + . . .

f(x− h) = f(x)− ∂f(x)

∂x
h+

1

2!

∂2f(x)

∂x2
h2 − 1

3!

∂3f(x)

∂x3
h3 + . . .

(29)

It leads to
f(x+ h) + f(x− h)

2
= f(x) +

1

2!

∂2f(x)

∂x2
h2 +

1

4!

∂4f(x)

∂x4
h4 + . . .

f(x+ h)− f(x− h)

2
=
∂f(x)

∂x
h+

1

3!

∂3f(x)

∂x3
h3 +

1

5!

∂5f(x)

∂x5
h5 + . . .

(30)

Let h = ∆x/2. This implies
∂f(x)

∂x
=
f(x+ ∆x/2)− f(x−∆x/2)

∆x
+O(∆x2)

f(x) =
f(x+ ∆x/2) + f(x−∆x/2)

2
+O(∆x2)

(31)
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Higher-order approximation of staggered-grid finite difference

To approximate the 1st-order derivatives as accurate as possible, we express it in the
following

∂f

∂x
=a1

f(x+ ∆x/2)− f(x−∆x/2)

∆x
+

a2
f(x+ 3∆x/2)− f(x− 3∆x/2)

3∆x
+

a3
f(x+ 5∆x/2)− f(x− 5∆x/2)

5∆x
+ · · ·

=c1
f(x+ ∆x/2)− f(x−∆x/2)

∆x
+

c2
f(x+ 3∆x/2)− f(x− 3∆x/2)

∆x
+

c3
f(x+ 5∆x/2)− f(x− 5∆x/2)

∆x
+ · · ·

(32)

where ci = ai/(2i − 1). Substituting the f(x + h) and f(x − h) with (29) for h =
∆x/2, 3∆x/2, . . . results in

∂f

∂x
=c1

(
∆x

∂f

∂x
+

1

3
(
∆x

2
)2∂

3f

∂x3
+ · · ·

)
/∆x

+ c2

(
3∆x

∂f

∂x
+

1

3
(
3∆x

2
)2∂

3f

∂x3
+ · · ·

)
/∆x

+ c3

(
5∆x

∂f

∂x
+

1

3
(
5∆x

2
)2∂

3f

∂x3
+ · · ·

)
/∆x+ . . .

=(c1 + 3c2 + 5c3 + 7c4 + · · · )∂f
∂x

+
∆x2

3 · 22
(c1 + 33c2 + 53c3 + 73c4 + · · · )∂

3f

∂x3

+
∆x4

3 · 24
(c1 + 35c2 + 55c3 + 75c4 + · · · )∂

5f

∂x5
+ · · ·

=(a1 + a2 + a3 + a4 + · · · )∂f
∂x

+
∆x2

3 · 22
(a1 + 32a2 + 52a3 + 72a4 + · · · )∂

3f

∂x3

+
∆x4

3 · 24
(a1 + 34a2 + 54a3 + 74a4 + · · · )∂

5f

∂x5
+ · · ·

(33)

Thus, taking first N terms means

a1 + a2 + a3 + · · ·+ aN = 1

a1 + 32a2 + 52a3 + · · ·+ (2N − 1)2aN = 0

a1 + 34a2 + 54a3 + · · ·+ (2N − 1)4aN = 0

· · ·
a1 + 32N−2a2 + 52N−2a3 + · · · ) + (2N − 1)2N−2aN = 0

(34)
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In matrix form, 
1 1 . . . 1
12 32 . . . (2N − 1)2

...
. . .

...
12N−2 32N−2 . . . (2N − 1)2N−2


︸ ︷︷ ︸

V


a1

a2
...
aN


︸ ︷︷ ︸

a

=


1
0
...
0


︸︷︷︸

b

(35)

The above matrix equation is Vandermonde-like system: Va = b, a = (a1, a2, . . . , aN)T .
The Vandermonde matrix

V =


1 1 . . . 1
x1 x2 . . . xN
...

. . .
...

xN−1
1 xN−1

2 . . . xN−1
N

 (36)

in which xi = (2i − 1)2, has analytic solutions. Va = b can be solved using the
specific algorithms, see Bjorck (1996). And we obtain

∂f

∂x
=

1

∆x

N∑
i=1

ci(f(x+ i∆x/2)− f(x− i∆x/2) +O(∆x2N) (37)

The MATLAB code for solving the 2N -order finite difference coefficients is provided
in the following.

1 f unc t i on c=s t a g g e r e d f d c o e f f (NJ)
2 % Computing 2∗N−order staggered−g r id FD c o e f f i c i e n t s (NJ=2N)
3 % Example :
4 % format long
5 % NJ=10;
6 % c=s t a g g e r e d f d c o e f f (NJ)
7

8 N=NJ/2 ;
9 x=ze ro s (N, 1 ) ;

10 b=ze ro s (N, 1 ) ; b (1)=1;
11 c=b ;
12 f o r k=1:N
13 x ( k)=(2∗k−1)ˆ2;
14 end
15

16 f o r k=1:N−1
17 f o r i=N:−1:k+1
18 b( i )=b( i )−x ( k )∗b( i −1);
19 end
20 end
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21

22 f o r k=N−1:−1:1
23 f o r i=k+1:N
24 b( i )=b( i )/ ( x ( i )−x ( i−k ) ) ;
25 end
26 f o r i=k :N−1
27 b( i )=b( i )−b( i +1);
28 end
29 end
30 f o r k=1:N
31 c ( k)=b( k )/(2∗k−1);
32 end

In general, the stability of staggered-grid difference requires that

∆tmax(v)

√
1

∆x2
+

1

∆z2
≤ 1∑N

i=1 |ci|
. (38)

Define C = 1PN
i=1 |ci|

. Then, we have

N = 1, C = 1

N = 2, C = 0.8571

N = 3, C = 0.8054

N = 4, C = 0.7774

N = 5, C = 0.7595

In the 2nd-order case, numerical dispersion is limited when

max(∆x,∆z) <
min(v)

10fmax

. (39)

The 4th-order dispersion relation is:

max(∆x,∆z) <
min(v)

5fmax

. (40)

Discretization of SPML

Take
∂px
∂t

+ d(x)px = v2∂vx
∂x

for an example. Using the 2nd-order approximation in Eq. (31), we expand it at the
time (k + 1

2
)∆t and the point [ix∆x, iz∆z]

pk+1
x [ix, iz]− pkx[ix, iz]

∆t
+ d[ix]

pk+1
x [ix, iz] + pkx[ix, iz]

2
= v2[ix, iz]

v
k+ 1

2
x [ix+ 1

2
, iz]− vk+ 1

2
x [ix− 1

2
, iz]

∆x
(41)
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That is to say,

pk+1
x [ix, iz] =

1− 0.5∆td[ix]

1 + 0.5∆td[ix]
pkx[ix, iz]+

1

1 + 0.5∆td[ix]

∆tv2[ix, iz]

∆x
(v
k+1 1

2
x [ix+

1

2
, iz]−vk+ 1

2
x [ix−1

2
, iz])

(42)
At time k∆t and [ix+ 1

2
, iz], we expand

∂vx
∂t

+ d(x)vx =
∂p

∂x
as

v
k+ 1

2
x [ix+ 1

2
, iz]− vk−

1
2

x [ix+ 1
2
, iz]

∆t
+d[ix]

v
k+ 1

2
x [ix+ 1

2
, iz] + v

k− 1
2

x [ix+ 1
2
, iz]

2
=
pk[ix+ 1, iz]− pk[ix, iz]

∆x
(43)

Thus, we have

v
k+ 1

2
x [ix+

1

2
, iz] =

1− 0.5∆td[ix]

1 + 0.5∆td[ix]
v
k− 1

2
x [ix+

1

2
, iz]+

1

1 + 0.5∆td[ix]

∆t

∆x
(pk[ix+1, iz]−pk[ix, iz])

(44)
In summary,

v
k+ 1

2
x [ix+

1

2
, iz] =

1− 0.5∆td[ix]

1 + 0.5∆td[ix]
v
k− 1

2
x [ix+

1

2
, iz]+

1

1 + 0.5∆td[ix]

∆t

∆x
(pk[ix+ 1, iz]− pk[ix, iz])

v
k+ 1

2
z [ix, iz +

1

2
] =

1− 0.5∆td[iz]

1 + 0.5∆td[iz]
v
k− 1

2
z [ix, iz +

1

2
]+

1

1 + 0.5∆td[iz]

∆t

∆z
(pk[ix, iz + 1]− pk[ix, iz])

pk+1
x [ix, iz] =

1− 0.5∆td[ix]

1 + 0.5∆td[ix]
pkx[ix, iz]+

1

1 + 0.5∆td[ix]

∆tv2[ix, iz]

∆x
(v
k+ 1

2
x [ix+

1

2
, iz]− vk+ 1

2
x [ix− 1

2
, iz])

pk+1
z [ix, iz] =

1− 0.5∆td[iz]

1 + 0.5∆td[iz]
pkz [ix, iz]+

1

1 + 0.5∆td[iz]

∆tv2[ix, iz]

∆z
(v
k+ 1

2
z [ix, iz +

1

2
]− vk+ 1

2
z [ix, iz − 1

2
])

pk+1[ix, iz] = pk+1
x [ix, iz] + pk+1

z [ix, iz]

(45)

If we define:

b′ =
1− 0.5∆td

1 + 0.5∆td
, b = exp(−∆td) (46)

we can easily find that b′ is a good approximation of b up to 2nd order, allowing for
the 2nd order Pade expansion:

exp(z) ≈ 1 + 0.5z

1− 0.5z
(47)
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Then, we have

1− b ≈ 1− b′ = ∆td

1 + 0.5∆td
(48)

Discretization of NPML

Note that all sub-equations can be formulated in the following form:

∂f

∂t
+ df = γ. (49)

The analytic solution of this equation is

f = −1

d
e−dt +

1

d
γ (50)

In discrete form,

f(k∆t) = −1

d
e−dk∆t +

1

d
γ,

f((k + 1)∆t) = −1

d
e−dte−dk∆t +

1

d
γ.

(51)

Thus,

f((k + 1)∆t) = e−d∆tf(k∆t) +
1

d
(1− e−d∆t)γ (52)

For ∂Ωxx

∂t
+ d(x)Ωxx = d(x)∂τxx

∂x
, γ = d(x)∂τxx

∂x
, the update rule becomes

Ωk+1
xx = e−d(x)∆tΩk

xx + (1− e−d(x)∆t)
∂τ

k+1/2
xx

∂x
= bxΩ

k
xx + (1− bx)∂τ

k+1/2
xx

∂x
(53)

where bx = e−d(x)∆t and bz = e−d(z)∆t. Ωxx, Ωxz, Ωzx, Ωzz, Ψxx, Ψxz, Ψzx and Ψzz can
be obtained in the same way:

Ωk+1
xx = bxΩ

k
xx + (1− bx)∂τ

k+1/2
xx

∂x
,Ωk+1

xz = bzΩ
k
xz + (1− bz)∂τ

k+1/2
xz

∂z

Ωk+1
zx = bxΩ

k
zx + (1− bz)∂τ

k+1/2
xz

∂x
,Ωk+1

zz = bzΩ
k
zz + (1− bz)∂τ

k+1/2
zz

∂z

Ψk+1
xx = bxΨ

k
xx + (1− bx)∂v

k+1/2
x

∂x
,Ψk+1

xz = bzΨ
k
xz + (1− bz)∂v

k+1/2
x

∂z

Ψk+1
zx = bxΨ

k
zx + (1− bx)∂v

k+1/2
z

∂x
,Ψk+1

zz = bzΨ
k
zz + (1− bz)∂v

k+1/2
z

∂z

(54)

As can be seen from Eq. (27), we only need to subtract the reflection part Ω and
Ψ after global updating (Eq. (9)). We summarize this precedure as follows:

Step 1: Perform the computation of Eq. (9) in whole area;

Step 2: In PML zone, subtract decaying parts according to Eq. (27).
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REVERSE TIME MIGRATION (RTM)

Brief overview

One-way equation based imaging techniques are inadequate to obtain accurate images
in complex media due to propagation direction changes in the background model
(Biondi, 2006). These approaches are extremely limited when handling the problems
of turning waves in the model containing sharp wave-speed contrasts and steeply
dipping reflectors. As an advanced imaging technology without dip and extreme
lateral velocity limitation, reverse time migration (RTM) was proposed early (Baysal
et al., 1983; McMechan, 1983), but not practical in terms of stringent computation
and memory requirement. However, it gained increasingly attention in recent years
due to the tremendous advances in computer capability. Until recently, 3D prestack
RTM is now feasible to obtain high fidelity images (Yoon et al., 2003; Guitton et al.,
2006).

RTM implementation

RTM can be carried out as follows: (1) forward-extrapolating the source wavefield,(2)
backward-extrapolating the receiver wavefield, both explicitly in time, and (3) apply
an imaging condition.

Imaging condition

The cross-correlation imaging condition can be expressed as

I(x) =
ns∑
s=1

∫ tmax

0

dt

ng∑
g=1

ps(x, t; xs)pg(x, t; xg) (55)

where I(x) is the migration image value at point x; and ps(x, t) and pg(x, t) are the
forward and reverse-time wavefields at point x. With illumination compensation, the
cross-correlation imaging condition is given by

I(x) =
ns∑
s=1

∫ tmax

0
dt
∑ng

g=1 ps(x, t; xs)pg(x, t; xg)∫ tmax

0
dtps(x, t; xs)ps(x, t; xs) + σ2

(56)

in which σ2 is chosen small to avoid being divided by zeros.

There exists a better way to carry out the illumination compensation, as suggested
by Guitton et al. (2007)

I(x) =
ns∑
s=1

∫ tmax

0
dt
∑ng

g=1 ps(x, t; xs)pg(x, t; xg)

〈∫ tmax

0
dtps(x, t; xs)ps(x, t; xs)〉x,y,z

(57)
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where 〈〉x,y,z stands for smoothing in the image space in the x, y, and z directions.

Yoon et al. (2003) define the seismic Poynting vector as

S = vp = ∇pdp

dt
p = (vxp, vzp). (58)

Here, we denote Ss and Sr as the source wavefield and receiver wavefield Poynting
vector. As mentioned before, boundary saving with split PML is a good scheme
for the computation of Poynting vector, because p and (vx, vz) are available when
backward reconstructing the source wavefield. The angle between the incident wave
and the reflected wave can then be obtained:

γ = arccos
Ss · Sr
|Ss||Sr| (59)

The incident angle (or reflective angle) is half of γ, namely,

θ =
γ

2
=

1

2
arccos

Ss · Sr
|Ss||Sr| (60)

Using Poynting vector to confine the spurious artefacts, Yoon and Marfurt (2006)
propose a hard thresholding scheme to weight the imaging condition:

I(x) =
ns∑
s=1

∫ tmax

0
dt
∑ng

g=1 ps(x, t; xs)pg(x, t; xg)W (θ)∫ tmax

0
dtps(x, t; xs)ps(x, t; xs) + σ2

(61)

where

W (θ) =

{
1 θ < θmax

0 otherwise
(62)

Costa et al. (2009) modified the weight as

W (θ) = cos3(
θ

2
). (63)

These approaches are better for eliminating the backward scattering waves in image.

Computation strategies and boundary saving

There are several possible ways to do RTM computation. The simplest one may be
just storing the forward modeled wavefields on the disk, and reading them for imag-
ing condition in the backward propagation steps. This approach requires frequent
disk I/O and has been replaced by wavefield reconstruction method. The so-called
wavefield reconstruction method is a way to recover the wavefield via backward re-
constructing or forward remodeling, using the saved wavefield shots and boundaries.
It is of special value for GPU computing because saving the data in device variables
eliminates data transfer between CPU and GPU. By saving the last two wavefield
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snaps and the boundaries, one can reconstruct the wavefield of every time step, in
time-reversal order. The checkpointing technique becomes very useful to further re-
duce the storage (Symes, 2007; Dussaud et al., 2008). It is also possible to avert the
issue of boundary saving by applying the random boundary condition, which may
bring some noises in the migrated image (Clapp, 2009; Clapp et al., 2010; Liu et al.,
2013b,a).

Yang et al. (2014) proposed an effective boundary for regular and staggered-grid
finite differences. In the case of regular grid finite difference of order 2N , we need
to save N points on each inner side in the model zone to reconstruct the wavefield.
For staggered grid finite difference of order 2N , we need to save 2N − 1 points on
each inner in the model for perfect reconstruction. The concept of effective boundary
saving does not depends on C or GPU implementation. However, it is of special
value for GPU implemenation, because it eliminates the CPU-GPU data transfer
for boundary saving. An example of effective boundary saving for regular grid finite
difference is given in Figure 10. The imaging examples using effective boundary saving
with staggered-grid finite difference can be found in the next section.

Numerical examples

I show my GPU-based RTM result for two benchmark models: Marmousi model (Ver-
steeg, 1994) and Sigsbee model (DiMarco et al., 2001). Here, I use CPML boundary
condition to obtain high quality imaging result.

The Marmousi model is shown in Figure 11. The spatial sampling interval is
∆x = ∆z = 4m. 51 shots are deployed. In each shot, 301 receivers are placed in
the split shooting mode. The parameters we use are listed as follows: nt = 13000,
∆t = 0.3 ms. Due to the limited resource on our computer, we store 65% boundaries
using page-locked memory. Figure 12a and 12b give the resulting RTM image after
Laplacian filtering. As shown in the figure, RTM with the effective boundary saving
scheme produces excellent image: the normalized cross-correlation imaging condition
greatly improves the deeper parts of the image due to the illumination compensation.
The events in the central part of the model, the limits of the faults and the thin layers
are much better defined.

The Sigsbee model is shown in Figure 13. The spatial interval is ∆x = ∆z =
25m. 55 shots are evenly distributed on the surface of the model. We still perform
nt = 13000 time steps for each shot (301 receivers). Due to the larger model size,
75% boundaries have to be stored with the aid of pinned memory. Our RTM results
are shown in Figure 14a and 14b. Again, the resulting image obtained by normal-
ized cross-correlation imaging condition exhibits better resolution for the edges of
the salt body and the diffraction points. Some events in the image using normal-
ized cross-correlation imaging condition are more visible, while they have a much
lower amplitude or are even completely lost in the image of cross-correlation imaging
condition.
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Figure 10: The forward modeled wavefield can be exactly reconstructed using effective
boundary saving.
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Figure 11: The Marmousi velocity model.

(a) (b)

Figure 12: RTM result of Marmousi model using effective boundary saving scheme
(staggered grid finite difference). (a) Result of cross-correlation imaging condition.
(b) Result of normalized cross-correlation imaging condition.

Figure 13: The Sigsbee velocity model.
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(a)

(b)

Figure 14: RTM result of Sigsbee model using effective boundary saving scheme
(staggered grid finite difference). (a) Result of cross-correlation imaging condition.
(b) Result of normalized cross-correlation imaging condition.
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FULL WAVEFORM INVERSION (FWI)

Time domain FWI was proposed by Tarantola (1984), and developed in Tarantola
(1986); Pica et al. (1990). Later, frequency domain FWI was proposed by Pratt et al.
(1998). Actually, many authors call it full waveform tomography. (tomography=fwi,
imaging=migration) Here, we mainly follow two well-documented paper Pratt et al.
(1998) and Virieux and Operto (2009). We define the misfit vector ∆p = pcal − pobs
by the differences at the receiver positions between the recorded seismic data pobs
and the modelled seismic data pcal = f(m) for each source-receiver pair of the seismic
survey. Here, in the simplest acoustic velocity inversion, m corresponds to the velocity
model to be determined. The objective function taking the least-squares norm of the
misfit vector ∆p is given by

E(m) =
1

2
∆p†∆p =

1

2
∆pT∆p∗ =

1

2

ng∑
r=1

ns∑
s=1

∫ tmax

0

dt|pcal(xr, t; xs)− pobs(xr, t; xs)|2

(64)
where ns and ng are the number of sources and geophones, † denotes the adjoint
and ∗ the complex conjugate, while f(·) indicates the forward modeling of the wave
propagation. The recorded seismic data is only a small subset of the whole wavefield.

The minimum of the misfit function E(m) is sought in the vicinity of the starting
model m0. FWI is essentially a local optimization. In the framework of the Born
approximation, we assume that the updated model m of dimension M can be written
as the sum of the starting model m0 plus a perturbation model ∆m: m = m0 + ∆m.
In the following, we assume that m is real valued.

A second-order Taylor-Lagrange development of the misfit function in the vicinity
of m0 gives the expression

E(m0+∆m) = E(m0)+
M∑
i=1

∂E(m0)

∂mi

∆mi+
1

2

M∑
i=1

M∑
j=1

∂2E(m0)

∂mi∂mj

∆mi∆mj+O(||∆m||3)

(65)
Taking the derivative with respect to the model parameter mi results in

∂E(m)

∂mi

=
∂E(m0)

∂mi

+
M∑
j=1

∂2E(m0)

∂mj∂mi

∆mj, i = 1, 2, . . . ,M. (66)

Briefly speaking, it is

∂E(m)

∂m
=
∂E(m0)

∂m
+
∂2E(m0)

∂m2
∆m (67)

Thus,

∆m = −
(
∂2E(m0)

∂m2

)−1
∂E(m0)

∂m
= −H−1∇Em (68)
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where

∇Em =
∂E(m0)

∂m
=

[
∂E(m0)

∂m1

,
∂E(m0)

∂m2

, . . . ,
∂E(m0)

∂mM

]T
(69)

and

H =
∂2E(m0)

∂m2
=

[
∂2E(m0)

∂mi∂mj

]
=


∂2E(m0)

∂m2
1

∂2E(m0)
∂m1m2

. . . ∂2E(m0)
∂m1mM

∂2E(m0)
∂m2m1

∂2E(m0)

∂m2
2

. . . ∂2E(m0)
∂m2mM

...
. . .

...
∂2E(m0)
∂mMm1

∂2E(m0)
∂mMm2

. . . ∂2E(m0)

∂m2
M

 . (70)

∇Em and H are the gradient vector and the Hessian matrix, respectively.

The Newton, Gauss-Newton, and steepest-descent methods

In terms of Eq. (64),

∂E(m)

∂mi

=
1

2

ng∑
r=1

ns∑
s=1

∫
dt

[(
∂pcal
∂mi

)
(pcal − pobs)∗ +

(
∂pcal
∂mi

)∗
(pcal − pobs)

]

=

ng∑
r=1

ns∑
s=1

∫
dtRe

[(
∂pcal
∂mi

)∗
∆p

]
(∆p = pcal − pobs)

= Re

[(
∂pcal
∂mi

)†
∆p

]
= Re

[(
∂f(m)

∂mi

)†
∆p

]
, i = 1, 2, . . . ,M.

(71)

That is to say,

∇Em = ∇E(m) =
∂E(m)

∂m
= Re

[(
∂f(m)

∂m

)†
∆p

]
= Re

[
J†∆p

]
(72)

where Re takes the real part, and J = ∂pcal

∂m
= ∂f(m)

∂m
is the Jacobian matrix, i.e., the

sensitivity or the Fréchet derivative matrix.

Differentiation of the gradient expression (71) with respect to the model parame-
ters gives the following expression for the Hessian H:

Hi,j =
∂2E(m)

∂mi∂mj

=
∂

∂mj

(
∂E(m)

∂mi

)
=

∂

∂mj

Re

[(
∂pcal
∂mi

)†
∆p

]

=
∂

∂mj

Re

[(
∂pcal
∂mi

)T
∆p∗

]
= Re

[
∂

∂mj

(
∂pcal
∂mi

)T
∆p∗

]
+ Re

[
∂p†cal
∂mi

∂pcal
∂mj

]
(73)

In matrix form

H =
∂2E(m)

∂m2
= Re

[
J†J
]

+ Re

[
∂JT

∂mT
(∆p∗,∆p∗, . . . ,∆p∗)

]
. (74)
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In many cases, this second-order term is neglected for nonlinear inverse problems. In
the following, the remaining term in the Hessian, i.e., Ha = Re[J†J], is referred to as
the approximate Hessian. It is the auto-correlation of the derivative wavefield. Eq.
(68) becomes

∆m = −H−1∇Em = −H−1
a Re[J†∆p]. (75)

The method which solves equation (74) when only Ha is estimated is referred to
as the Gauss-Newton method. To guarantee th stability of the algorithm (avoiding
the singularity), we can use H = Ha + ηI, leading to

∆m = −H−1∇Em = −(Ha + ηI)−1Re
[
J†∆p

]
. (76)

Alternatively, the inverse of the Hessian in Eq. (68) can be replaced by H = Ha = µI,
leading to the gradient or steepest-descent method:

∆m = −µ−1∇Em = −α∇Em = −αRe [J†∆p
]
, α = µ−1. (77)

At the k-th iteration, the misfit function can be presented using the 2nd-order
Taylor-Lagrange expansion

E(mk+1) = E(mk−αk∇E(mk)) = E(mk)−αk〈∇E(mk),∇E(mk)〉+1

2
α2
k∇E(mk)

†Hk∇E(mk).

(78)

Setting ∂E(mk+1)

∂αk
= 0 gives

αk =
∇E(mk)

†∇E(mk)

∇E(mk)†Hk∇E(mk)

Hk:=Ha=J†kJk
=

∇E(mk)
†∇E(mk)

〈Jk∇E(mk),Jk∇E(mk)〉 (79)

Conjugate gradient (CG) implementation

The gradient-like method can be summarized as

mk+1 = mk + αkdk. (80)

The conjugate gradient (CG) algorithm decreases the misfit function along the con-
jugate gradient direction:

dk =

{
−∇E(m0), k = 0

−∇E(mk) + βkdk−1, k ≥ 1
(81)
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There are many ways to compute βk:

βHSk =
〈∇E(mk),∇E(mk)−∇E(mk−1)〉
〈dk−1,∇E(mk)−∇E(mk−1)〉

βFRk =
〈∇E(mk),∇E(mk)〉
〈∇E(mk−1),∇E(mk−1)〉

βPRPk =
〈∇E(mk),∇E(mk)−∇E(mk−1)〉

〈∇E(mk−1),∇E(mk−1)〉
βCDk = −〈∇E(mk),∇E(mk)〉

〈dk−1,∇E(mk−1)〉
βDYk =

〈∇E(mk),∇E(mk)〉
〈dk−1,∇E(mk)−∇E(mk−1)〉

(82)

To achieve best convergence rate, in practice we suggest to use a hybrid scheme
combing Hestenes-Stiefel and Dai-Yuan:

βk = max(0,min(βHSk , βDYk )). (83)

Iterating with Eq. (80) needs to find an appropriate αk. Here we provide two
approaches to calculate αk.

• Approach 1: Currently, the objective function is

E(mk+1) = E(mk + αkdk) = E(mk) + αk〈∇E(mk),dk〉+
1

2
α2
kd
†
kHkdk. (84)

Setting ∂E(mk+1)

∂αk
= 0 gives

αk = −〈dk,∇E(mk)〉
d†kHkdk

Hk:=Ha=J†kJk
= −〈dk,∇E(mk)〉

〈Jkdk,Jkdk〉 . (85)

• Approach 2: Recall that

f(mk +αkdk) = f(mk) +
∂f(mk)

∂m
dk +O(||dk||2) = f(mk) +αkJkdk +O(||dk||2). (86)

Using the 1st-order approximation, we have

E(mk+1) =
1

2
||f(mk + αkdk)− pobs||2

≈
1

2
||f(mk) + αkJkdk − pobs||2 =

1

2
||f(mk)− pobs + αkJkdk||2

= E(m) + αk〈Jkdk, f(mk)− pobs〉+
1

2
α2
k〈Jkdk,Jkdk〉.

(87)

Setting ∂E(mk+1)

∂αk
= 0 gives

αk =
〈Jkdk,pobs − f(mk)〉
〈Jkdk,Jkdk〉 . (88)
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In fact, Eq. (88) can also be obtained from Eq. (85) in terms of Eq. (72): ∇Em =
J†∆p.

In terms of Eq. (86), the term Jkdk is computed conventionally using a 1st-order-
accurate finite difference approximation of the partial derivative of f:

Jkdk =
f(mk + εdk)− f(mk)

ε
(89)

with a small parameter ε. In practice, we chose an ε such that

max(ε|dk|) 6
max(|mk|)

100
. (90)

Fréchet derivative

Recall that the basic acoustic wave equation can be specified as

1

v2(x)

∂2p(x, t; xs)

∂t2
−∇2p(x, t; xs) = fs(x, t; xs). (91)

where fs(x, t; xs) = f(t′)δ(x − xs)δ(t − t′). The Green’s function Γ(x, t; xs, t
′) is

defined by

1

v2(x)

∂2Γ(x, t; xs, t
′)

∂t2
−∇2Γ(x, t; xs, t

′) = δ(x− xs)δ(t− t′). (92)

Thus the integral representation of the solution can be given by

p(xr, t; xs) =

∫
V

dx

∫
dt′Γ(xr, t; x, t

′)f(x, t′; xs)

=

∫
V

dx

∫
dt′Γ(xr, t− t′; x, 0)f(x, t′; xs)(Causility of Green′s function)

=

∫
V

dxΓ(xr, t; x, 0) ∗ f(x, t; xs)

(93)

where ∗ denotes the convolution operator.

A perturbation v(x)→ v(x) + ∆v(x) will produce a field p(x, t; xs) + ∆p(x, t; xs)
defined by

1

(v(x) + ∆v(x))2

∂2[p(x, t; xs) + ∆p(x, t; xs)]

∂t2
−∇2[p(x, t; xs)+∆p(x, t; xs)] = fs(x, t; xs)

(94)
Note that

1

(v(x) + ∆v(x))2
=

1

v2(x)
− 2∆v(x)

v3(x)
+O(∆2v(x)) (95)
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Eq. (94) subtracts Eq. (91), yielding

1

v2(x)

∂2∆p(x, t; xs)

∂t2
−∇2∆p(x, t; xs) =

∂2[p(x, t; xs) + ∆p(x, t; xs)]

∂t2
2∆v(x)

v3(x)
(96)

Using the Born approximation, Eq. (96) becomes

1

v2(x)

∂2∆p(x, t; xs)

∂t2
−∇2∆p(x, t; xs) =

∂2p(x, t; xs)

∂t2
2∆v(x)

v3(x)
(97)

Again, based on integral representation, we obtain

∆p(xr, t; xs) =

∫
V

dxΓ(xr, t; x, 0) ∗ ∂
2p(x, t; xs)

∂t2
2∆v(x)

v3(x)
. (98)

Gradient computation

According to the previous section, it follows that

∂pcal
∂vi(x)

=

∫
V

dxΓ(xr, t; x, 0)∗p̈(x, t; xs) 2

v3(x)
=

∫
V

dxΓ(xr, t; x, 0)∗∂
2p(x, t; xs)

∂t2
2

v3(x)
.

(99)
The convolution guarantees∫

dt[g(t) ∗ f(t)]h(t) =

∫
dtf(t)[g(−t) ∗ h(t)]. (100)

Then, Eq. (71) becomes

∂E(m)

∂mi

=

ng∑
r=1

ns∑
s=1

∫
dtRe

[(
∂pcal
∂mi

)∗
∆p

]
(∆p = pcal − pobs)

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(∫
V

dxΓ(xr, t; x, 0) ∗ ∂
2p(x, t; xs)

∂t2
2

v3(x)

)∗
∆p(xr, t; xs)

]

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(
∂2pcal(x, t; xs)

∂t2
2

v3(x)

)∗
(

∫
V

dxΓ(xr,−t; x, 0) ∗∆p(xr, t; xs))

]

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(
∂2pcal(x, t; xs)

∂t2
2

v3(x)

)∗
(

∫
V

dxΓ(xr, 0; x, t) ∗∆p(xr, t; xs))

]

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(
∂2pcal(x, t; xs)

∂t2
2

v3(x)

)∗
pres(xr, t; xs)

]
(101)

where pres(x, t; xs) is a time-reversal wavefield produced using the residual ∆p(xr, t; xs)
as the source. It follows from reciprocity theorem

pres(x, t; xs) =

∫
V

dxΓ(xr, 0; x, t) ∗∆p(xr, t; xs) =

∫
V

dxΓ(x, 0; xr, t) ∗∆p(xr, t; xs).

(102)
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satisfying
1

v2(x)

∂2pres(x, t; xs)

∂t2
−∇2pres(x, t; xs) = ∆p(xr, t; xs). (103)

It is noteworthy that an input f and the system impulse response function g are
exchangeable in convolution. That is to say, we can use the system impulse response
function g as the input, the input f as the impulse response function, leading to the
same output. In the seismic modeling and acquisition process, the same seismogram
can be obtained when we shot at the receiver position xr when recording the seismic
data at the position x.

Numerical results

I use the Marmousi model for the benchmark test, as shown in the top panel of Fig-
ure 15. FWI tacitly requires a good starting model incorporated with low frequency
information. Therefore, we use a starting model (bottom panel of Figure 15) obtained
by smoothing the original model 20 times with a 5x5 window.

The FWI is carried out for 300 iterations. We record all the updated velocity to
make sure the velocity refinement is going on during the iterative procedure. The
updated velocity model at the iteration 1, 20, 50, 100, 180 and 300 are displyed in
Figure 17. Figure 18 presents the decreasing misfit function in iterations. As can
be seen from the Figures 17 and 18, the velocity model changes significantly at the
early stage. Later iterations in FWI make some improvement on small details for the
velocity model.
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