next up previous [pdf]

Next: Reverse time migration (RTM) Up: Discretization Previous: Discretization of SPML

Discretization of NPML

Note that all sub-equations can be formulated in the following form:

$\displaystyle \frac{\partial f}{\partial t}+d f=\gamma.$ (49)

The analytic solution of this equation is

$\displaystyle f=-\frac{1}{d}e^{-d t}+\frac{1}{d}\gamma$ (50)

In discrete form,

\begin{displaymath}\begin{split}f(k\Delta t)=-\frac{1}{d}e^{-dk\Delta t}+\frac{1...
...rac{1}{d}e^{-d t}e^{-dk\Delta t}+\frac{1}{d}\gamma. \end{split}\end{displaymath} (51)

Thus,

$\displaystyle f((k+1)\Delta t)=e^{-d\Delta t}f(k\Delta t)+\frac{1}{d}(1-e^{-d\Delta t})\gamma$ (52)

For $ \frac{\partial \Omega_{xx}}{\partial t}+d(x)\Omega_{xx}=d(x)\frac{\partial\tau_{xx}}{\partial x}$ , $ \gamma=d(x)\frac{\partial\tau_{xx}}{\partial x}$ , the update rule becomes

$\displaystyle \Omega_{xx}^{k+1}=e^{-d(x)\Delta t}\Omega_{xx}^{k}+(1-e^{-d(x)\De...
...rtial x}=b_x\Omega_{xx}^{k}+(1-b_x)\frac{\partial\tau_{xx}^{k+1/2}}{\partial x}$ (53)

where $ b_x=e^{-d(x)\Delta t}$ and $ b_z=e^{-d(z)\Delta t}$ . $ \Omega_{xx}$ , $ \Omega_{xz}$ , $ \Omega_{zx}$ , $ \Omega_{zz}$ , $ \Psi_{xx}$ , $ \Psi_{xz}$ , $ \Psi_{zx}$ and $ \Psi_{zz}$ can be obtained in the same way:

\begin{equation*}\left\{ \begin{split}\Omega_{xx}^{k+1}=b_x\Omega_{xx}^{k}+(1-b_...
...b_z)\frac{\partial v_z^{k+1/2}}{\partial z}\\ \end{split} \right.\end{equation*} (54)

As can be seen from Eq. (27), we only need to subtract the reflection part $ \Omega$ and $ \Psi$ after global updating (Eq. (9)). We summarize this precedure as follows:

Step 1: Perform the computation of Eq. (9) in whole area;

Step 2: In PML zone, subtract decaying parts according to Eq. (27).


next up previous [pdf]

Next: Reverse time migration (RTM) Up: Discretization Previous: Discretization of SPML

2021-08-31