next up previous [pdf]

Next: About this document ... Up: Zheng et al.: Pattern-based Previous: Conjugate gradient algorithm


Bednar, J. B., and G. H. Neale, 1999, A comparison of pattern and series based multiple suppression: 69th Annual International Meeting, SEG, Expanded Abstracts, 1056-1059.

Brown, M., and R. G. Clapp, 2000, (t,x) domain, patern-based ground roll removal: 70th Annual International Meeting, SEG, Expanded Abstracts, 2103-2106.

Canales, L. L., 1984, Random noise reduction: 54th Annual International Meeting, SEG, Expanded Abstracts, 525-527.

Claerbout, J. F., 2010, Image estimation by example: Geophysical soundings image construction - Multidimensional autoregression: Stanford Exploration Project,

Claerbout, J. F., and S. Fomel, 2000, Spitz makes a better assumption for the signal PEF: SEP report, 103, 205-213.

Claerbout, J. F., and A. G. Johnson, 1971, Extrapolation of Time-Dependent Waveforms along their Path of Propagation: Geophysical Journal International, 26, 285-293.

Corso, G., P. S. Kuhn, L. S. Lucena, and Z. D. Thomé, 2003, Seismic ground roll time–frequency filtering using the gaussian wavelet transform: Physica A: Statistical Mechanics and its Applications, 318, 551-561.

Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67, 1946-1960.

----, 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74, V25-V33.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75, V25-V38.

Guitton, A., 2006, A pattern‐based approach for multiple removal applied to a 3d gulf of mexico data set: Geophysical prospecting, 54, 135-152.

Kumar, V., and F. J. Herrmann, 2009, Incoherent noise suppression with curvelet‐domain sparsity: 79th Annual International Meeting, SEG, Expanded Abstracts, 3356-3360.

Liu, G., X. Chen, and K. Wu, 2011, Random noise attenuation using nonstationary autoregression in F-X domain: 73rd Annual International Meeting, EAGE, Expanded Abstracts, P091.

Liu, Y., and S. Fomel, 2013, Seismic data analysis using local time-frequency decomposition: Geophysical Prospecting, 61, 516-525.

Liu, Y., S. Fomel, and C. Liu, 2015, Signal and noise separation in prestack seismic data using velocity-dependent seislet transform: Geophysics, 80, WD117-WD128.

Liu, Y., and B. Li, 2018, Streaming orthogonal prediction filter in the t-x domain for random noise attenuation: Geophysics, 83, F41-F48.

Miao, X., and S. Cheadle, 1998, Noise attenuation with wavelet transforms: 68th Annual International Meeting, SEG, Expanded Abstracts, 1072-1075.

Naghizadeh, M., and M. Sacchi, 2018, Ground-roll attenuation using curvelet downscaling: Geophysics, 83, V185-V195.

Spitz, S., 1999, Pattern recognition, spatial predictability, and subtraction of multiple events: The Leading Edge, 18, 55-58.

Trad, D. O., T. J. Ulrych, and M. D. Sachhi, 2002, Accurate interpolation with high‐resolution time‐variant radon transforms: Geophysics, 67, 644-656.

Wang, Y., 1999, Random noise attenuation using forward-backward linear prediction: Journal of Seismic Exploration, 8, 133-142.

----, 2016, Seismic Inversion: Theory and Applications: Wiley Blackwell.

Yu, S., J. Ma, and W. Wang, 2019, Deep learning for denoising: Geophysics, 84, V333-V350.

Yuan, Y., X. Si, and Y. Zheng, 2020, Ground-roll attenuation using generative adversarial networks: Geophysics, 85, WA255-WA267.