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ABSTRACT

In recent years, wave-equation imaged data are often presented in common-image
angle-domain gathers as a decomposition in scattering angle at the reflector,
which provide a natural access to analyzing migration velocities and amplitudes.
In the case of anisotropic media, the importance of angle gathers is enhanced
by the need to properly estimate multiple anisotropic parameters for a proper
representation of the medium. We extract angle gathers for each downward-
continuation step from converting offset-frequency planes into angle-frequency
planes simultaneously with applying the imaging condition in a transversely
isotropic with a vertical symmetry axis (VTI) medium. The analytic equations,
though cumbersome, are exact within the framework of the acoustic approxima-
tion. They are also easily programmable and show that angle gather mapping
in the case of anisotropic media differs from its isotropic counterpart, with the
difference depending mainly on the strength of anisotropy. Synthetic examples
demonstrate the importance of including anisotropy in the angle gather gener-
ation as mapping of the energy is negatively altered otherwise. In the case of
a titled axis of symmetry (TTI), the same VTI formulation is applicable but
requires a rotation of the wavenumbers.

INTRODUCTION

Angle gathers have gained prominence as they provide wave equation imaging meth-
ods with an outlet to perform velocity analysis. Angle gathers also alleviate the
limitations that offset gathers have in handling multi pathing (de Bruin et al., 1990;
Mosher and Foster, 2000; Stolk and de Hoop, 2006). An angle gather decomposition
for anisotropic media will allow us to export these features to the anisotropic world,
and this is especially important considering the number of parameters we need to
deal with in anisotropic media and the prevalent multi-pathing that takes place in
such media.

Downward wave extrapolation provides an accurate method of seismic imaging in
structurally complex areas. Downward wave extrapolation is also naturally formu-
lated to produce angle gathers (de Bruin et al., 1990; Mosher and Foster, 2000; Rickett
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and Sava, 2002; Xie and Wu, 2002; Sava and Fomel, 2003; Soubaras, 2003; Biondi and
Symes, 2004; Sava and Fomel, 2005). Fomel (2004) showed that structural dependence
can be removed in a depth-slice approach to extracting angle gathers. Specifically,
one can generate gathers at each depth level, converting offset-space-frequency planes
into angle-space planes and applying simultaneously the imaging condition. The im-
proved mapping retains velocity dependence but removes the effect of the structure.
Because of its ray-parameter-based (Fourier) formulation, this approach lends itself
naturally to an anisotropic phase-velocity extension.

Migration velocity analysis in anisotropic media remains a challenging and open
issue. Multiple parameters are needed to represent the anisotropic model. For a
transversely isotropic medium with vertical axis of symmetry (VTI media), only
NMO velocity (v) and the non-elliptic parameter (η) predominantly influence imag-
ing (Alkhalifah and Tsvankin, 1995; Alkhalifah et al., 2001). Vertical velocity (vz)
controls mainly placement of the image in depth. Nevertheless, estimating even two
parameters that can vary laterally and vertically from image gathers is difficult. Angle
gathers provide an opportunity to use residual moveout to help update anisotropic
parameters. Biondi (2007) suggested an approach to extracting angle gathers in
anisotropic media from post-migration data. Biondi’s formulation is based on numer-
ical calculation of angle gathers and relies on ray information that is hard to examine
analytically.

In this paper, we develop an analytical formulation for extracting angle gathers in
VTI 2D media. We use the depth-slice approach to angle gathers as a platform for the
extension to VTI. Angle gather mapping depends strongly on anisotropic parameters.
We analyze this dependency using numerical computations. Next, we show synthetic
data examples that confirm the theoretical analysis. Finally, we explain the possible
extension of our approach to TTI (tilted transversely isotropic) media. An extension
to 3D can be achieved along the lines of Fomel (2004).

THE DEPTH SLICE APPROACH FOR VTI MEDIA

Relations between image coordinates and reflection (scattering) angles at reflecting
interfaces can be extracted by analyzing the geometry of reflections in the simple case
of a dipping reflector in a locally homogeneous medium (Fomel, 2004). The geometry
of the reflection ray paths in 2-D is depicted in Figure 1(a).

According to elementary rules of geometry for the ray configuration in Figures 1(a)
and 1(b), with the wavenumber vector given by k = ω p as it relates to the ray-
parameter vector for a given angular frequency ω, opening (scattering) phase angle
θ is represented by the following relation (Fomel, 2004; Sava and Fomel, 2005)

k2hx + k2hz = k2s + k2r − 2krks cos(θ) , (1)

where khx and khz are horizontal and vertical components of the offset wave number,
and ks and kr are source and receiver wavenumber amplitudes related to their com-
ponents as follows: k2s ≡ k2sx +k2sz, k

2
r ≡ k2rx +k2rz, with khx ≡ krx−ksx, kmx ≡ krx +ksx,
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Figure 1: (a) A schematic plot showing angle θ. Although the model depicts a
homogeneous setting, the development will rely on the ray parameters defined in the
immediate vicinity of the the reflection point, as shown in b. (b) A schematic plot
depicting the relation between the source and receiver ray-parameter vectors (ps and
pg) and the offset and midpoint vectors (ph and pm)

as suggested by Figure 1(b), where kmx is the horizontal component of the midpoint
wavenumber.

To complete the system of equations necessary to relate angle θ to midpoint and
offset horizontal wavenumbers, we use the dispersion relation developed by Alkhalifah
(1998) to define each of ksz and krz as follows:

k2sz ≡ (ω ∂ts
∂z

)2 = ω2

v2z
− v2ω2(khx−kmx)2

2v2z(2ω
2−v2η(khx−kmx)2)

, (2)

k2rz ≡ (ω ∂tr
∂z

)2 = ω2

v2z
− v2ω2(khx+kmx)2

2v2z(2ω
2−v2η(khx+kmx)2)

, (3)

where v is the NMO velocity. Using equation (1) in its expanded form and after some
manipulation and collecting terms with the same power of cos θ, we end up with the
following quadratic equation:

a cos4(θ) + b cos2(θ) + c = 0, (4)

with solutions given by

θ = cos−1

±
√
−b±

√
b2 − 4ac

2a

 . (5)

Analytical representation of the coefficients is shown in Table 1. The four solutions
of equation (5) are controlled by the sign of the offset wavenumber and its magnitude
compared with the midpoint wavenumber. In the frequency-wavenumber domain,
equation (5) can be used to map offset (horizontal) wavenumbers to angle gathers for a
specific frequency, midpoint (horizontal) wavenumber, and depth slice. A description
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of an algorithm to use with the mapping equation, in the case of an isotropic medium,
is given by Fomel (2004).

Setting η = 0 yields mapping for elliptical anisotropy with coefficients of equa-
tion (5) given by Table 2. The coefficients are represented by much simpler formulas.
In the isotropic case, η = 0 and vz = v, Table 1 reduces to Table 3 and, if substituted
into the mapping formula of equation (5), is equivalent to the corresponding mapping
equation of Fomel (2004).

NUMERICAL TESTS: THE ANISOTROPY INFLUENCE

Using equation (5) we evaluated angle gathers as a function of offset and midpoint
wavenumbers for a given frequency. We tested such mapping for various models using
different strengths of anisotropy as we varied η, vz, and the NMO velocity v.

Figures 2-3 show contour density plots of angle as a function of offset and midpoint
wavenumbers, for a 60-Hz frequency slice. In Figure 2 the medium is isotropic, with
a velocity of 2 km/s. Clearly, for khx = 0, the angle is zero regardless of the midpoint
wavenumber, which is expected, because for zero-offset the scattering or opening
angle is equal to zero. Also, we observe that angles decrease with dip (or kmx) for a
given offset wavenumber, which is also expected, because for any offset a scattering
angle becomes zero in the case of a vertical reflector. The areas given in white in the
Figures 2-5 correspond to regions where the ksz or krz become complex, and thus
represent evanescent waves.

Figure 2: Constant-depth
constant-frequency (60 Hz)
slice mapped to opening an-
gles for an isotropic medium
with velocity equal to 2 km/s.
Zero-offset wavenumber maps to
zero (normal incidence) angle.
The four blank corners represent
evanescent regions. Negative
angles correspond to a switch
in the source-receiver direction,
and thus, the result is symmet-
ric based on the principal of
reciprocity
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In anisotropic media, as illustrated in Figure 3, for η equal to 0.1 and 0.3, the
angles decrease with dip for a constant offset wavenumber faster than in the isotropic
case. In the example, considering that vz is lower in the anisotropic models, the
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higher horizontal velocities given by the larger η resulted in smaller scattering angles
because reflection occurs more updip for larger η.

Figure 3: Constant-depth
constant-frequency (60 Hz)
slice mapped to opening angles
as in Figure 2, but for a VTI
model with vz=1.8 km/s, v=2
km/s, and η = 0.1 (left) and
η = 0.3 (right).
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Whereas the influence of η is clearly large, the change in vertical velocity has a
minor influence on the angles as a function of the midpoint wavenumber (or dip),
as demonstrated by the difference plot in Figure 4. A 0.6 km/s difference in vertical
velocity of an elliptical isotropic model with η=0 (left) and a VTI model with η=0.3 re-
sulted in differences mainly in the offset wavenumber direction, because depth change
caused by the different vertical velocity provides variations in angles with offset.

Figure 4: Left: The difference
between opening angles for an
elliptical anisotropic model with
vz=1.8 km/s, v=2 km/s and that
of a similar model, with vz=1.2
km/s. Right: The difference be-
tween opening angles for a VTI
model of Figure 3 (right) for
vz=1.8 km/s, v=2 km/s, and η =
0.3 and that of a similar model,
with vz=1.2 km/s.
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In comparison, if we change the NMO velocity, v, the angles hardly change at all,
especially around small dips and small offsets. This fact is evident in Figure 5, where
we change NMO velocity 0.6 km/s, and the general difference is small until we get to
large offset and midpoint wavenumbers. This difference implies that the mapping is
practically NMO-velocity independent. This is the case for η = 0 (left) and η = 0.3
(right) in Figure 5, which implies, that for a given elliptical anisotropic model one
can find an isotropic model that produces similar mapping granted that the velocity
of the isotropic model is equal to the vertical velocity for the elliptical anisotropy.
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Figure 5: Left: The difference between reflection angles for an elliptical anisotropic
model with vz=1.8 km/s, v=2 km/s and that of a similar model, with v=1.4 km/s.
Right: The difference between reflection angles for a VTI model of Figure 3 (right)
for vz=1.8 km/s, v=2 km/s, and η = 0.3 and that of a similar model, with v=1.4
km/s.

SYNTHETIC EXAMPLE

In the following example, we use a homogeneous model for simplicity, although noth-
ing in the development requires that. It is convenient so we can isolate the anisotropy
influence on angle gathers decomposition. To follow convention, we display angle
gathers in the following examples using half the opening (or scattering) angle (= θ

2
).

We consider the reflector model in Figure 6, which is made up of a number of dome-
like anticlines. This model allows us to focus on an angle gather located at 8 km that
includes many dips. For a velocity of 2 km/s and η = 0.2, we generate the prestack
synthetic dataset shown in Figure 7. We use Kirchhoff modeling to obtain the syn-
thetic data (Alkhalifah, 1995). As a reference, we show in Figure 8 the isotropic
migration of the isotropic version of the data. In this figure, we observe the extension
of reflections that are acquired with a limited offset in the angle representation.

Conventional phase shift downward continuation requires that no lateral velocity
variation is present. Since the synthetic model has no lateral (or even vertical) velocity
variation, we use a VTI version of the DSR (double-square-root) phase-shift migra-
tion (Alkhalifah, 2000) to migrate the data. However, prior to applying the zero-time
imaging condition we map the offset wavenumbers to angle, and thus, obtain angle
gathers. Figure 9 shows the isotropically migrated section at near zero angle. It also
shows on the right hand side the angle gather for an isotropic angle gather mapping.
Clearly, the angle gather includes residuals resulting from ignoring anisotropy. These
residuals start at the top with deviations at large angles with a fourth-order move-
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out (known as nonhyperbolic) often associated with the semi-horizontal reflectors to
second-order strong deviations typically associated with dipping reflectors (Alkhali-
fah and Tsvankin, 1995). The top plot in Figure 9 is a slice of a constant depth of 2
km and includes some residual information spanning other angle gathers.

If we downward continue using an anisotropic phase-shift migration followed by an
isotropic angle gather mapping, we image the data accurately as shown in Figure 10.
Even the angle gathers, despite using an isotropic mapping, show no residuals as
we have imaged that data accurately. However, though not immediately obvious,
most of the migrated energy is mapped to the wrong angle. On the other hand, an
anisotropic mapping of angle gathers places reflections at their true angles (Figure 11).
This fact can be realized from comparing the extension of angle gathers of Figures 10
and 11. The lower-than-actual horizontal velocity treatment in the isotropic mapping
places energy at smaller reflection angle values. This phenomenon can be directly
attributed to the difference between phase and group velocities. Specifically, for
horizontal reflections, the isotropic angle gathers map phase angles (ignoring the
difference), while anisotropic ones map ray angles. When the horizontal velocity is
higher in a VTI medium, the ray angle, measured from vertical, tend to be higher
than the phase angle.

Figure 6: A reflector model containing 5 reflections in a dome like formation. We focus
on angle gathers at location 8 km, at which several reflection dips are represented.

This synthetic test the importance of anisotropic angle gather mapping to place
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Figure 7: Prestack synthetic data generated using Kirchhoff modeling for a VTI model
with velocity (NMO and vertical) equal 2 km/s and η = 0.2.
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Figure 8: Migrated section after an isotropic migration with velocity of 2 km/s of
an equivalent isotropic synthetic data. The angle gathers obtained using an isotropic
mapping at 8 km location is displayed on the right. The top section shows a depth
slice as a function of angle gather at depth 2 km.
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Figure 9: Migrated section after an isotropic migration with velocity of 2 km/s of the
VTI synthetic data in Figure 7. Again, the angle gathers obtained using an isotropic
mapping at 8 km location is displayed on the right, and the top section shows a depth
slice as a function of angle gather at depth 2 km.
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Figure 10: Migrated section after a VTI migration with velocity of 2 km/s and η=0.2
of the VTI synthetic data in Figure 7. Again, the angle gathers obtained using an
isotropic mapping at 8 km location is displayed on the right, and the top section
shows a depth slice as a function of angle gather at depth 2 km.
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Figure 11: Migrated section after a VTI migration with velocity of 2 km/s and η=0.2
of the VTI synthetic data in Figure 7. The angle gathers obtained, now, using the
VTI mapping at 8 km location is displayed on the right. The top section shows a
depth slice as a function of angle gather at depth 2 km.
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reflections at their true scattering angles. In practice, the velocity model building
process uses residuals along angle gathers to estimate the required velocity update.
Proper definition of the angle gather residuals will simplify the update process. This
is especially true if the update is based on reflection tomography.

THE TTI CASE

In the case of a tilt in the angle of symmetry of the TI (TTI) medium, the dispersion
relations 2 and 3 must be altered to reflect the tilt. Specifically, the wavenumbers
should be transformed to the direction of the tilt. In fact, at the reflection point all
equations used to develop the mapping in equation (4) hold regardless of the direction
of tilt. This implies that the quadratic solution (5) applies with a, b, and c given by
Table 1 granted that the wavenumbers are transformed in the direction of the tilt.
Considering that φ is the tilt angle measured from vertical in 2-D, the horizontal
(conventional) wavenumbers given by the surface-recorded data are given by

ksc ≡ ksx cosφ− ksz sinφ, (6)

and
krc ≡ krx cosφ− krz sinφ. (7)

where ksx and krx now correspond to the normal-to-the-tilt wavenumber direction
and they are related to ksz and krz (tilt direction wavenumbers), respectively using
equations 2 and 3. Based on the above equations, to solve for ksx and krx needed
for the angle gather mapping, we are required to solve a quartic equation that can
be represented, with pain, analytically or solved numerically. Alternatively, the for-
mulations for a transversely isotropic medium with tilt constrained to the dip (DTI),
introduced by Alkhalifah and Sava (2010), is simpler than those introduced here for
a general TI medium, and thus can be used at the velocity model building stage.
However, when the assumption of the tilt being normal to the reflector dip fails, for
example at salt flank reflections where the tilt is generally not normal to the Salt
flank, we will need a general formulation similar to the one developed here.

CONCLUSIONS

We have developed analytical relationships to generate angle gathers using wave-
equation migration in VTI media. These relations are based on an approach for
generating gathers at each depth level by converting offset-space-frequency planes
into angle-space planes while simultaneously applying the imaging condition. Al-
though the angle gathers depend on medium parameters, they are independent of the
structure, which provides an opportunity for a simple and practical implementation.
Comparing the mapping equation for VTI media with those for the isotropic case
demonstrates the large influence that the anisotropy parameter η has on the mapping
process. On the other hand, the influence of vertical velocity is confined to the offset
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direction, and the influence of NMO velocity is small. Synthetic data applications
demonstrate the importance of accurate mapping of energy in the angle domain. In
the case of a TTI medium, the required modification to the mapping equations is
given by the transformation of the wavenumbers in the dispersion relation to the
direction of of the symmetry axis and, as a result, a similar analytic mapping exists.
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(k2h − k2m)
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v2η (kh − km)2 − 2ω2
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v2η (kh + km)2 − 2ω2
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−2v2ηk2h (v2ηk2m + 2ω2) + v4η2k4h + (v2ηk2m − 2ω2)

2
)

+4ω4
(

2v2(4η + 1)k2h (v2(4η + 1)k2m + 4ω2)− v4(4η + 1)2k4h − (v2(4η + 1)k2m − 4ω2)
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2
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2
)
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(
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(
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)
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)
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)(
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(
v2z
(
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)
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)
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2

(k2h − k2m)
4 (
v2η (kh − km)2 − 2ω2

)3 (
v2(4η + 1) (kh − km)2 − 4ω2

)2 (
v2η (kh + km)2 − 2ω2

)4[
v4z (k2h − k2m)

2
(
−2v2ηk2h (v2ηk2m + 2ω2) + v4η2k4h + (v2ηk2m − 2ω2)

2
)

+4ω4
(

2v2(4η + 1)k2h (v2(4η + 1)k2m + 4ω2)− v4(4η + 1)2k4h − (v2(4η + 1)k2m − 4ω2)
2
)]2

Table 1: Exact analytical equations for the coefficients of equation (4).

a
− (k2h − k2m) 4 (vkh − vkm + 2ω) 2 (−vkh + vkm + 2ω) 2

(−2k2h (k2m (v4 − v4z) + 4v2ω2) + k4h (v4 − v4z) + (v2k2m − 4ω2) 2 − k4mv4z) 2

b
2 (k2h − k2m) 4 (vkh − vkm + 2ω) 2 (−vkh + vkm + 2ω) 2 (4ω2 − (v2 − v2z) (kh − km) 2)

(4ω2 − (v2 − v2z) (kh + km) 2)
(−2k2h (k2m (v4 + v4z) + 4v2ω2) + k4h (v4 + v4z) + (v2k2m − 4ω2) 2 + k4mv

4
z)

c
− (k2h − k2m) 4 (vkh − vkm + 2ω) 2 (−vkh + vkm + 2ω) 2

(−2k2h (k2m (v4 − v4z) + 4v2ω2) + k4h (v4 − v4z) + (v2k2m − 4ω2) 2 − k4mv4z) 2

Table 2: Exact analytical equations for the coefficients of equation (4) in the case of
elliptic anisotropy (η = 0).
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a − (k2h − k2m) 4 (vkh − vkm + 2ω) 2 (−vkh + vkm + 2ω) 2 (v2 (k2h + k2m)− 2ω2) 2

b
(k2h − k2m) 4 (vkh − vkm + 2ω) 2 (−vkh + vkm + 2ω) 2

(v2 (−2k2h (v2k2m + 2ω2) + v2k4h + v2k4m − 4ω2k2m) + 8ω4)
c − (k2h − k2m) 4 (vkh − vkm + 2ω) 2 (−vkh + vkm + 2ω) 2 (v2 (k2h + k2m)− 2ω2) 2

Table 3: Exact analytical equations for the coefficients of equation (4) in the case of
isotropy (η = 0, vz = v).
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