next up previous [pdf]

Next: Appendix A: Higher-order expansions Up: Alkhalifah and Fomel: Source Previous: Acknowledgments


Abma, R., J. Sun, and N. Bernitsas, 1999, Antialiasing methods in Kirchhoff migration: Geophysics, 64, 1783-1792.

Aldridge, D. F., 1994, Linearization of the eikonal equation (short note): Geophysics, 59, 1631-1632.

Alkhalifah, T., 1995, Gaussian beam depth migration for anisotropic media: Geophysics, 60, 1474-1484.

----, 2002, Traveltime computation with the linearized eikonal equation for anisotropic media: Geophys. Prosp., 50, 373-382.

----, 2010, Efficient traveltime compression for 3D prestack kirchhoff migration: Geophysical Prospecting, in print, 58.

Alkhalifah, T., and S. Fomel, 2001, Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates: Geophys. Prosp., 49, 165-178.

Bender, C. M., and S. A. Orszag, 1978, Advanced mathematical methods for scientists and engineers: McGraw-Hill.

Bevc, D., 1997, Imaging complex structures with semirecursive Kirchhoff migration: Geophysics, 62, 577-588.

Fomel, S., and J. A. Sethian, 2002, Fast phase-space computation of multiple arrivals: Proceedings of the National Academy of Sciences, 99, 7329-7334.

Franklin, J. B., and J. M. Harris, 2001, A high-order fast marching scheme for the linearized eikonal equation: Journal of Computational Acoustics, 9, 1095-1109.

Geoltrain, S., and J. Brac, 1993, Can we image complex structures with first-arrival traveltime?: Geophysics, 58, 564-575.

Gray, S. H., 2005, Gaussian beam migration of common-shot records: Geophysics, 70, S71-S77.

Hill, N. R., 1990, Gaussian beam migration: Geophysics, 55, 1416-1428.

----, 2001, Prestack Gaussian-beam depth migration: Geophysics, 66, 1240-1250.

Kim, S., 2002, 3-D eikonal solvers: First-arrival traveltimes: Geophysics, 67, 1225-1231.

Lumley, D. E., J. F. Claerbout, and D. Bevc, 1994, Anti-aliased Kirchhoff 3-D migration: 64th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1282-1285.

Podvin, P., and I. Lecomte, 1991, Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools: Geophysical Journal International, 105, 271-284.

Popovici, A. M., and J. Sethian, 2002, 3-D imaging using higher order fast marching traveltimes: Geophysics, 67, 604-609.

Qian, J., and W. W. Symes, 2002, An adaptive finite-difference method for traveltimes and amplitudes: Geophysics, 67, 167-176.

Sethian, J. A., 1996, A fast marching level set method for monotonically advancing fronts: Proc. Nat. Acad. Sci., 93, 1591-1595.

Sethian, J. A., and A. M. Popovici, 1999, 3-D traveltime computation using the fast marching method: Geophysics, 64, 516-523.

Slotnick, M. M., 1959, Lessons in Seismic Computing: Soc. of Expl. Geophys.
(Edited by R. A. Geyer).

Symes, W. W., and J. Qian, 2003, A slowness matching Eulerian method for multivalued solutions of eikonal equations: Journal of Scientific Computing, 19, 501-526.

van Trier, J., and W. W. Symes, 1991, Upwind finite-difference calculation of traveltimes: Geophysics, 56, 812-821.

Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic complex data set: The Leading Edge, 13, 927-936.

Vidale, J. E., 1988, Finite-difference calculation of traveltimes: Bull. Seis. Soc. Am., 6, 2062–2076.

----, 1990, Finite-difference calculation of traveltimes in three dimensions: Geophysics, 55, 521-526.

Zhao, H.-K., 2005, A fast sweeping method for eikonal equations: Mathematics of Computation, 74, 603-627.