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ABSTRACT

We propose a novel approach for removing multiple reflections noise based on
an adaptive randomized-order empirical mode decomposition framework. We
first flatten the primary reflections in common midpoint (CMP) gather using the
automatically picked NMO velocities that correspond to the primary reflections
and then randomly permutate all the traces. Next, we removed the spatially
distributed random spikes that correspond to the multiple reflections using the
EMD based smoothing approach that is implemented in the f − x domain. The
trace randomization approach can make the spatially coherent multiple reflections
random along the space direction and can decrease the coherency of near-offset
multiple reflections. The EMD based smoothing method is superior to median
filter and prediction error filter in that it can help preserve the flattened signals
better, without the need of exact flattening, and can preserve the amplitude
variation much better. In addition, EMD is a fully adaptive algorithm and the
parameterization for EMD based smoothing can be very convenient.

INTRODUCTION

Multiples are multiplicative events seen in seismic profiles, which undergoes more than
one reflections Wu et al. (2016). Multiple attenuation is one of the most important
steps in seismic data processing, especially for marine data processing. Instead of
being incoherent along the spatial direction like random noise Lin et al. (2015); Chen
et al. (2016), the multiple reflections are coherent and behave nearly the same as the
primary reflections, which makes it very difficult to remove them using simple signal
processing methods. The surface related multiple elimination (SRME) is one of the
most appealing approaches to attenuate the multiple reflections, which includes two
main steps: multiple prediction and adaptive subtraction Verschuur et al. (1992);
Huo and Wang (2009). The surface related multiple reflections are first predicted
based on the SRME theory and then adaptively subtracted from the raw data record.
The adaptive subtraction step is intended to adjust for the mismatch of amplitude
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and phase during the SRME prediction step. There have existed several ways for
designing the adaptive subtraction filters. Verschuur et al. (1992) proposed the clas-
sic least-squares based method for building the adaptive subtraction filter, which is
called the stationary matching filter Jiao et al. (2015). Wang (2003b) proposed an
expanded multiple multichannel matching filter, which exploits more local time and
phase information to match the multiple reflections. The regularized optimization is
also adopted for non-stationary matching filtering Fomel (2009a); Chen and Fomel
(2015), which better appeals to the real non-stationary seismic data. Another widely
used approach to attenuate multiple reflections is by dip filtering after normal move-
out (NMO) of primary reflections. While the primary reflections are flattened after
NMO, the multiple reflections cannot be flattened in the NMO corrected gather. Usu-
ally a Radon transform is used to remove the unflattened multiple reflections Foster
and Mosher (1992); Wang (2003a); Abbad et al. (2011); Donno (2011); Zhuang et al.
(2015); Xue et al. (2016). The dip filtering based approach can not only attenuate
the surface-related multiple reflections, but also can attenuate high-order multiple
reflections or interbed multiple reflections. When processing the marine field seismic
data, the SRME method and the dip filtering based method are usually combined to
obtain the optimal suppression of all types of multiple reflections.

Empirical mode decomposition (EMD) Huang et al. (1998) can adaptively decom-
pose a non-stationary signal into different stationary components, which are called
intrinsic mode functions (IMF). The oscillating frequency of each IMF decreases ac-
cording to the separation sequence of each IMF. EMD has found successful applica-
tions in seismic data processing Chen and Ma (2014); Chen (2016). EMD is com-
monly applied in each frequency slice in the frequency-space domain and the highest
wavenumber component is removed. The only parameter we need to define in such
method is the number of dip components. Considering that, in practice, we com-
monly choose to remove the first EMD component in order to remove the highest
oscillating components, the EMD based filtering is non-parametric. Because of the
adaptivity and the superior performance of the EMD based smoothing in field seis-
mic data processing, more and more researchers are turning to use this technique as a
blind-processing tool in order to deal with the rapidly increasing data size in modern
seismic data processing Chen et al. (2015c).

In this letter, we propose a novel EMD based approach called randomized-order
EMD to attenuate multiple reflections noise Carvalho (1992); Fomel (2009a); We-
glein et al. (2003); Weglein (2013). The common midpoint (CMP) gather is first
flattened by using the automatically picked velocities Fomel (2009b) corresponding
to the primary reflections. Then, the primary reflections are flattened while the mul-
tiple reflections are not. Since the multiple reflections and primary reflections are
much similar in the near-offset part, we propose to first randomize the data along the
spatial direction and make the unflattened multiple reflections behave like random in-
coherent noise along the spatial direction. Then the EMD based smoothing algorithm
is applied to remove such incoherent noise. After EMD based smoothing, an inverse
randomization step is applied, which is followed by the inverse normal moveout. The
proposed approach is compared with median filtering and prediction error filtering
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based approaches. The performance shows that the EMD based smoothing algorithm
can have stronger capability in removing the incoherent noise while preserving more
primary reflections energy. The randomized-order EMD approach can not only be
used in attenuating multiple reflections noise, but also be used in attenuating other
types of coherent noise. The proposed method solves two long-standing problems in
existing demutiple algorithms. The first one is the difficulty in separating coherent
signal and coherent noise in near-offset traces, because they have very close local
slopes and curvatures. The second one is the difficulty in selecting optimal parame-
ters when applying a denoising operator. In many traditional denoising algorithms,
the parameters are highly dependent on the input data set. The proposed algorithm
solves the first problem by shuffling the traces along the spatial direction that help
best distinguish between signal and noise. The proposed algorithm solves the second
problem by using the EMD based method to adaptively process the data, where we
do not need to specify any input parameter regardless of the complexity of input data
set.

METHOD

The dip filtering based multiple reflections noise attenuation approaches depend on
the separation between multiple reflections and primary reflections in the NMO cor-
rected CMP gather, especially in the near offset where the local slopes between pri-
mary reflections and multiple reflections are very close. In this letter, we propose two
novel strategies to better separate the primary reflections and multiple reflections.
The first strategy is based on a trace randomization procedure, where we can turn
the unflattened multiple reflections into random noise and maximize the difference
between primary reflections and multiple reflections in the near offset. The next
strategy is a different spatial smoothing approach. The new smoothing approach is
based on the empirical mode decomposition (EMD), where we can attenuate the ran-
dom noise that corresponds to multiple reflections adaptively, and more importantly
we can preserve the useful reflection energy even though the events are not exactly
flattened.

Brief review of EMD

EMD is an adaptive signal analysis algorithm that decomposes a non-stationary 1D
signal into multiple stationary sub-signals:

s(t) =
N∑

n=1

cn(t) + r(t). (1)

where s(t) is a non-stationary 1D signal and cn(t) is nth decomposed stationary signal,
which is also called intrinsic mode function (IMF). r(t) is the monotonic residual. N
is the number of IMFs.
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The decomposition is achieved via a recursive process called sifting algorithm.
There are four main steps in the sifting algorithm: firstly, finding the local maxima
and minima of the signal, and then fitting those extrema by cubic spline interpolation
in order to obtain the upper and lower envelopes; secondly, calculating the mean
of upper and lower envelopes and subtracting it from the original signal; thirdly,
recursively implementing the first two steps until the remaining signal satisfy the two
criteria of IMF: (1) the number of extrema and the number of zero crossing points
cannot differ by more than one; (2) the mean value of upper envelope and lower
envelope must be zero Huang et al. (1998); fourthly, subtracting the obtained IMF
from the original signal and implementing the aforementioned three steps recursively
on the remaining signal until the residual r(t) becomes either too small or a monotonic
function.

EMD based smoothing

Chen et al. (2014b) provided an overall introduction of the applications of EMD in
random noise attenuation of seismic data. The best way to utilize EMD to remove
spatially incoherent noise is to apply EMD along the space direction in each frequency
slice and to remove the first decomposed mode that contains the high-wavenumber
noise.

The methodology can be summarized mathematically as:

ŝ(m, t) = F−1
(

N∑
n=2

Cn(m,w)

)
, (2)

Fd(m, t) =
N∑

n=1

Cn(m,w), (3)

where ŝ(m, t) and d(m, t) denote the estimated signal and observed noisy signal,
respectively. F and F−1 denote the forward and inverse Fourier transforms along the
time axis, respectively. Cn denotes the nth EMD decomposed component. w denotes
frequency.

The detailed workflow can be summarized as

1. Transform the data from t− x domain to f − x domain.

2. For each frequency slice,

(a) separate real and imaginary parts in the spatial sequence,

(b) compute the first IMF, for the real signal and subtract it to obtain the
filtered real signal,

(c) repeat for the imaginary part,
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(d) combine to create the filtered complex signal.

3. Transform data back to the t− x domain.

Smoothing via EMD has two main advantages. The first is its adaptivity. One does
not need to decide any parameter before using the EMD based smoothing approach.
As can be seen in equation 2, the first component after EMD is removed in each
frequency slice to attenuate any spatially incoherent noise, which is very convenient
to implement and has a robust performance. Another advantage is that EMD based
smoothing can preserve the spatial amplitude variation details well since it does not
require the exactly horizontal data structure. Smoothing via EMD can get very
smooth final results. Unlike some other spatial smoothing operators such as mean
filter, median filter or KL filter, the EMD based smoothing can also perform well even
when the events have small curvatures. The main difference between the EMD and
other decomposition algorithms is that it is empirical and thus adaptive to different
input data sets, while other algorithms are based on a carefully designed mathematical
model that requires a time-consuming parameter setting process Liu et al. (2016b,a);
Li et al. (2016).

Randomized-order EMD

EMD was thought to be useful only in attenuating spatially incoherent noise. How-
ever, the multiple reflections noise in seismic data is spatially coherent. Here, we
propose a novel randomized-order EMD in order to make EMD capable of attenu-
ating spatially coherent noise. The randomized-order EMD can be summarized in
five main procedures. Firstly, each common midpoint (CMP) gather is flattened ac-
cording to the normal moveout (NMO) velocity of primary reflections. This step will
require NMO velocity analysis Chen et al. (2015b); Gan et al. (2016). An automatic
velocity picking approach is used to pick the NMO velocities that corresponds to the
primary reflections Fomel (2009b). After the first step, the primary reflections are
flattened while the multiple reflections noise of different orders are not. Secondly,
the traces are shuffled randomly in order to make the unflattened multiple reflections
noise spatially random. Because the primary reflections have small spatial variations,
a random trace randomization along the spatial direction will not change the shape of
primary reflections too much but will greatly change the spatial coherency of multiple
reflections noise. More specifically, the spatially coherent multiple reflections noise
can be transformed into spatially incoherent random noise. Thirdly, EMD based
smoothing is applied to the randomized CMP gather to attenuate all spatially inco-
herent noise. Finally, the inverse trace randomization is implemented to the smoothed
CMP gather, which is followed by the inverse NMO.

In this letter, EMD is utilized to attenuate noise other than random noise. The
randomized order EMD is used for attenuating multiple reflections noise. Since the
randomized-order EMD is a generally framework, it can also be used to attenuate
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any types of unwanted spatially coherent noise, such as ground roll noise Chen et al.
(2015a) and point source diffraction.

Fig. 1 shows an example of the randomization process. Fig. 1a is a NMO
corrected CMP gather with multiple reflections not flattened. Fig. 1d shows the
section after random permutation of all the traces along the spatial direction. It is
obvious that after random shuffling, the multiple reflections turn into random spikes
from the spatial view while the primary reflections are still coherent. The spikes can
be removed using any type of coherency-based denoising approach. Fig. 1b shows
demultipled data using a common PEF filter Abma and Claerbout (1995). Fig. 1c
shows the demultipled data using EMD based smoothing. Figs. 1e and 1f show the
removed multiple reflections using PEF and EMD based approaches, respectively. The
performance using the PEF method is not acceptable since there is still some noise
left. Since we know the true signal in this example, we can quantitively compare the
denoising performance between two methods. We use the signal-to-noise ratio (SNR)
defined below to measure the denoising performance Chen et al. (2014a); Gan et al.
(2015); Huang et al. (2016); Zu et al. (2016):

SNR = 10 log10

‖s‖22
‖s− ŝ‖22

, (4)

where s and ŝ denote the true and estimated signals, respectively. The calculated
SNRs of the original noisy data, denoised data using PEF and denoised data using
EMD are 0.168 dB, 8.344 dB, and 9.061 dB, respectively. The SNR comparison
confirms the better denoising performance using the EMD method.

EXAMPLE

First we make a synthetic example, as shown in Fig. 2. Fig. 2a shows the noisy data.
Fig. 2b shows the NMO corrected data with multiple reflections not flattened.

We zoom a part from the data and show detailed comparison of demultiple perfor-
mance using median filter (MF) based and EMD based approaches (Fig. 4). Fig. 4a
shows the noisy zoomed CMP gather. Fig. 2b shows the data after randomization.
Fig. 4c is the demultipled data using MF. Fig. 4d shows its corresponding noise.
Fig. 4e shows the demultipled data using EMD and Fig. 4f shows the corresponding
noise. It is obvious that the EMD based approach can make the flattened primary
reflections more coherent while the MF based approach will cause some abnormal
features, since the MF based approach is more based on the spike-like property of
noise. While the noise is just incoherent but not spiky, MF based approach cannot
obtain a successful performance.

The second example is a field data example, which is shown in Fig. 5a. There ex-
ists strong internal multiple reflections in this CMP gather. Figs. 5c and 5e show the
results using MF and EMD based approaches (here we omit the flattening, random-
ization, processes and just show the final performances). It is clear that the proposed
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) CMP gather. (b) Demultipled using PEF method. (c) Demultipled using
the proposed approach. (d) Trace randomization result of (a). (e) Noise corresponding
to (b). (f) Noise corresponding to (c).
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approach can obtain more coherent primary reflections. The bottom row of Fig. 5
shows the velocity spectra that corresponds to the top row of Fig. 5. The strong
multiple reflections energy can be revealed from Fig. 5b. Figs. 5d and 5f confirm
that significant multiple reflections energy has been removed while the EMD based
approach obtain an obviously better preservation of the primary energy, since the
velocity spectrum corresponding EMD has more focused and stronger velocity peaks.
The removed multiple reflections using MF and EMD approaches are shown in Figs.
6a and 6b, respectively.

(a) (b)

Figure 2: (a) Original synthetic example. (b) Flattened CMP gather by picking the
primary reflections related velocity peaks.

CONCLUSIONS

We propose a novel approach to attenuate multiple reflections using randomized-order
empirical mode decomposition (EMD). EMD is applied in each frequency slice to ob-
tain different oscillating wavenumber components. The several highest wavenumber
components are then removed to remove the unflattened high wavenumber compo-
nents. In order to make EMD based smoothing approach capable of attenuating
spatially coherent noise, we propose to first apply a trace randomization procedure
to the NMO-corrected CMP gather to make the unflattened multiple reflections spa-
tially incoherent (like random noise) and thus easier for attenuation. Compared with
the other denoising approaches that are based on spatial coherency, the proposed
EMD based approach is non-parametric and can obtain a better demultiple perfor-
mance with a better preservation of the flattened primary reflections. The proposed
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a) CMP gather. (b) Trace randomization result. (c) Demultipled using
the PEF method. (d) Noise corresponding to (c). (e) Demultipled using the proposed
method. (f) Noise corresponding to (e).
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) CMP gather. (b) Trace randomization result. (c) Demultipled using
the PEF method. (d) Noise corresponding to (c). (e) Demultipled using the proposed
method. (f) Noise corresponding to (e).
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a) CMP gather. (b) Velocity spectrum of (a). (c) Demultipled using MF.
(d) Velocity spectrum of (c). (e) Demultipled using EMD. (f) Velocity spectrum of
(e).
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(a) (b)

Figure 6: (a) Removed multiple reflections using MF. (b) Removed multiple reflections
using EMD.

EMD based approach is also more adaptive than those more advanced EMD based
approaches, like EEMD Wu and Huang (2009), CEEMD Colominas et al. (2012), or
ICEEMD Colominas et al. (2014), which require more input parameters.
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