next up previous [pdf]

Next: Muir approximation Up: On anelliptic approximations for Previous: Introduction

Exact expressions

Wavefront propagation in the general anisotropic media can be described with the anisotropic eikonal equation

$\displaystyle v^2\left(\frac{\nabla T}{\vert\nabla T\vert},\mathbf{x}\right)\,\vert\nabla T\vert^2 = 1\;,$ (1)

where $ \mathbf{x}$ is a point in space, $ T(\mathbf{x})$ is the traveltime at that point for a given source, and $ v(\mathbf{n},\mathbf{x})$ is the phase velocity in the phase direction $ \mathbf{n} = \frac{\nabla T}{\vert\nabla T\vert}$ .

In the case of VTI media, the three modes of elastic wave propagation ($ qSH$ , $ qSV$ , and $ qP$ ) have the following well-known explicit expressions for the phase velocities (Gassmann, 1964):

$\displaystyle v_{SH}^2(\mathbf{n},\mathbf{x})$ $\displaystyle =$ $\displaystyle m\,\sin^2{\theta} + l\,\cos^2{\theta}\;;$ (2)
$\displaystyle v^2_{SV}(\mathbf{n},\mathbf{x})$ $\displaystyle =$ $\displaystyle \frac{1}{2}\,\left[(a+l)\,\sin^2{\theta} + (c+l)\,\cos^2{\theta}\right] -$  
    $\displaystyle \frac{1}{2}\,\sqrt{\left[(a-l)\,\sin^2{\theta} -
(c-l)\,\cos^2{\theta}\right]^2 +
4\,(f+l)^2\,\sin^2{\theta}\,\cos^2{\theta}}\;;$ (3)
$\displaystyle v^2_{P}(\mathbf{n},\mathbf{x})$ $\displaystyle =$ $\displaystyle \frac{1}{2}\,\left[(a+l)\,\sin^2{\theta} + (c+l)\,\cos^2{\theta}\right] +$  
    $\displaystyle \frac{1}{2}\,\sqrt{\left[(a-l)\,\sin^2{\theta} - (c-l)\,\cos^2{\theta}\right]^2 +
4\,(f+l)^2\,\sin^2{\theta}\,\cos^2{\theta}}\;,$ (4)

where, in the notation of Backus (1962) and Berryman (1979), $ a=c_{11}$ , $ c=c_{33}$ , $ f=c_{13}$ , $ l=c_{55}$ , $ m=c_{66}$ , $ c_{ij}(\mathbf{x})$ are the density-normalized components of the elastic tensor, and $ \theta$ is the phase angle between the phase direction $ \mathbf{n}$ and the axis of symmetry.

The group velocity describes the propagation of individual ray trajectories $ \mathbf{x}(\tau)$ . It can be determined from the phase velocity using the general expression

$\displaystyle \mathbf{V} = \frac{d \mathbf{x}}{d \tau} = v \mathbf{n} + \left(\mathbf{I} - \mathbf{n}\, \mathbf{n}^T\right) \nabla_{\mathbf{n}} v\;,$ (5)

where $ \mathbf{I}$ denotes the identity matrix, $ \mathbf{n}^T$ stands for the transpose of $ \mathbf{n}$ , and $ \nabla_{\mathbf{n}} v$ is the gradient of $ v$ with respect to $ \mathbf{n}$ . The two terms in equation (5) are clearly orthogonal to each other. Therefore, the group velocity magnitude is (Berryman, 1979; Byun, 1984; Postma, 1955)

$\displaystyle V = \vert\mathbf{V}\vert = \sqrt{v^2 + v_{\theta}^2}\;,$ (6)

where

$\displaystyle v_{\theta}^2 = \left\vert\left(\mathbf{I} - \mathbf{n}\, \mathbf{...
...right\vert^2 - \left\vert\mathbf{n} \cdot \nabla_{\mathbf{n}} v\right\vert^2\;.$ (7)

The group velocity has a particularly simple form in the case of elliptic anisotropy. Specifically, the phase velocity squared has the quadratic form

$\displaystyle v_{\mbox{ell}}^2(\mathbf{n},\mathbf{x}) = \mathbf{n}^T\,\mathbf{A}(\mathbf{x})\,\mathbf{n}$ (8)

with a symmetric positive-definite matrix $ \mathbf{A}$ , and the group velocity is

$\displaystyle \mathbf{V}_{\mbox{ell}} = \mathbf{A}\,\mathbf{p}\;,$ (9)

where $ \mathbf{p} = \nabla T = \mathbf{n}/v(\mathbf{n},\mathbf{x})$ . The corresponding group slowness squared has the explicit expression

$\displaystyle \frac{1}{V_{\mbox{ell}}^2(\mathbf{N},\mathbf{x})} = \mathbf{N}^T\,\mathbf{A}^{-1}(\mathbf{x})\,\mathbf{N}\;,$ (10)

where $ \mathbf{N}$ is the group direction, and $ \mathbf{A}^{-1}$ is the matrix inverse of $ \mathbf{A}$ . For example, the elliptic expression (2) for the phase velocity of $ qSH$ waves in VTI media transforms into a completely analogous expression for the group slowness

$\displaystyle \frac{1}{V_{SH}^2(\mathbf{N},\mathbf{x})} = M\,\sin^2{\Theta} + L\,\cos^2{\Theta}$ (11)

where $ M=1/m$ , $ L=1/l$ , and $ \Theta$ is the angle between the group direction $ \mathbf{N}$ and the axis of symmetry.

The situation is more complicated in the anelliptic case. Figure 1 shows the $ qP$ and $ qSV$ phase velocity profiles in a transversely isotropic material - Greenhorn shale (Jones and Wang, 1981), which has the parameters $ a=14.47\,$km$ ^2/$s$ ^2$ , $ l=2.28\,$km$ ^2/$s$ ^2$ , $ c=9.57\,$km$ ^2/$s$ ^2$ , and $ f=4.51\,$km$ ^2/$s$ ^2$ . Figure 2 shows the corresponding group velocity profiles. The non-convexity of the $ qSV$ phase velocity causes a multi-valued (triplicated) group velocity profile. The shapes of all the surfaces are clearly anelliptic.

exph
exph
Figure 1.
Phase velocity profiles for $ qP$ (outer curve) and $ qSV$ (inner curve) waves in a transversely isotropic material (Greenhorn shale).
[pdf] [png] [sage]

exgr
exgr
Figure 2.
Group velocity profiles for $ qP$ (outer curve) and $ qSV$ (inner curve) waves in a transversely isotropic material (Greenhorn shale).
[pdf] [png] [sage]

A simple model of anellipticity is suggested by the Muir approximation (Dellinger et al., 1993; Muir and Dellinger, 1985), reviewed in the next section.


next up previous [pdf]

Next: Muir approximation Up: On anelliptic approximations for Previous: Introduction

2014-05-14