next up previous [pdf]

Next: About this document ... Up: Fomel: Regularized nonstationary autoregression Previous: Acknowledgments


Bath, M., 1995, Modern Spectral Analysis with Geophysical Applications: Soc. of Expl. Geophys.
(Edited by Robert E. Wiley).

Battista, B. M., C. Knapp, T. McGee, and V. Goebel, 2007, Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data: Geophysics, 72, H29-H37.

Bekara, M., and M. van der Baan, 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74, V89-V98.

Beylkin, G., and L. Monzón, 2005, On approximation of functions by exponential sums: Applied and Computational Harmonic Analysis, 19, 17-48.

Canales, L. L., 1984, Random noise reduction: 54th Ann. Internat. Mtg, Soc. of Expl. Geophys., Session:S10.1.

Castagna, J. P., S. Sun, and R. W. Siegfried, 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22, 120-127.

Daubechies, I., J. Lu, and H.-T. Wu, 2011, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool: Applied and Computational Harmonic Analysis, 30, 243-261.

Daubechies, I., and S. Maes, 1996, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models, in Wavelets in medicine and biology: CRC Press, 527-546.

Engl, H., M. Hanke, and A. Neubauer, 1996, Regularization of inverse problems: Kluwer Academic Publishers.

Fomel, S., 2007, Shaping regularization in geophysical-estimation problems: Geophysics, 72, R29-R36.

----, 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74, V25-V33.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75, V25-V38.

Gardner, G. H. F., and L. Lu, eds., 1991, Slant-stack processing: Society of Exploration Geophysicists.
Issue 14 of Geophysics reprint series.

Gritsenko, S. A., S. Fomel, and V. S. Chernyak, 2001, Filtering using Prony's method: Geofizika, 24-26 (in Russian).

Han, J., and M. van der Baan, 2013, Empirical mode decomposition for seismic time-frequency analysis: Geophysics, 78, O9-O19.

Herrera, R. H., J.-B. Tary, and M. van der Baan, 2013, Time-frequency representation of microseismic signals using the synchrosqueezing transform, in Geoconvention: Can. Soc. Expl. Geophys.

Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173, 233-248.

Hou, T. Y., and Z. Shi, 2011, Adaptive data analysis via sparse time-frequency representation: Advances in Adaptive Data Analysis, 3, 1-28.

----, 2013, Data-driven time-frequency analysis: Applied and Computational Harmonic Analysis, 35, 284–308.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis: Proceeding of the Royal Society of London Series A, 454, 903-995.

Liu, G., and X. Chen, 2013, Noncausal $f$-$x$-$y$ regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data: Journal of Applied Geophysics, 93, 60-66.

Liu, G., X. Chen, J. Du, and K. Wu, 2012, Random noise attenuation using $f$-$x$ regularized nonstationary autoregression: Geophysics, 77, V61-V69.

Liu, G., S. Fomel, and X. Chen, 2011, Time-frequency analysis of seismic data using local attributes: Geophysics, 76, P23-P34.

Liu, Y., and S. Fomel, 2011, Seismic data interpolation beyond aliasing using regularized nonstationary autoregression: Geophysics, 76, V69-V77.

----, 2013, Seismic data analysis using local time-frequency decomposition: Geophysical Prospecting, 61, 516-525.

Magrin-Chagnolleau, I., and R. Baraniuk, 1999, Empirical mode decomposition based frequency attributes: 69th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1949-1952.

Mallat, S., 2009, A wavelet tour of signal processing: The sparse way: Academic Press.

Marple, S. L., 1987, Digital spectral analysis with applications: Prentice-Hall.

Mitrofanov, G., Z. Zhan, and J. Cai, 1998, Using of the Proni transform of Chinese seismic data: 68th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1157-1159.

Mitrofanov, G. M., and V. I. Priimenko, 2011, Prony filtration of seismic data: theoretical background: Revista Brasileira de Geofísica, 29.

Pisarenko, V. F., 1973, The retrieval of harmonics from a covariance function: Journal of the Royal Astronomical Society, 33, 347-366.

Prony, R., 1795, Essai expérimental et analytique: Annuaire de l'École Polytechnique, 1, 24.

Spitz, S., 1999, Pattern recognition, spatial predictability, and subtraction of multiple events: The Leading Edge, 18, 55-58.

----, 2000, Model-based subtraction of multiple events in the frequency-space domain: 70th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1969-1972.

Taner, M. T., F. Koehler, and R. E. Sheriff, 1979, Complex seismic trace analysis: Geophysics, 44, 1041-1063.
(Errata in GEO-44-11-1896; Discussion in GEO-45-12-1877-1878; Reply in GEO-45-12-1878-1878).

Toh, K., and L. Trefethen, 1994, Pseudozeros of polynomials and pseudospectra of companion matrices: Mathematik, 68, 403-425.

Wu, Z., and N. E. Huang, 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method: Advances in Adaptive Data Analysis, 1, 1-41.