next up previous [pdf]

Next: About this document ... Up: Poulson et al.: Parallel Previous: Acknowledgments

Bibliography

1
P. R. AMESTOY, I. S. DUFF, J. KOSTER, AND J.-Y. L'EXCELLENT, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal., 23 (2001), no. 1, pp. 15-41.

2
F. AMINZADEH, J. BRAC, AND T. KUNZ, 3-D Salt and Overthrust Models, SEG/EAGE 3-D Modeling Series 1, Society of Exploration Geophysicists, Tulsa, OK, 1997.

3
C. ASHCRAFT, R. GRIMES, J. LEWIS, B. PEYTON, AND H. SIMON, Progress in sparse matrix methods for large sparse linear systems on vector supercomputers, Internat. J. Supercomputer Applications, 1 (1987), pp. 10-30.

4
I. M. BABUŠSKA AND S. A. SAUTER, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM Review, 42 (2000), no. 3, pp. 451-484.

5
A. BAYLISS, C. GOLDSTEIN, AND E. TURKEL, An iterative method for the Helmholtz equation, J. Comput. Phys., 49 (1983), pp. 443-457.

6
M. BOLLHOEFER, M. GROTE, AND O. SCHENK, Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media, SIAM J. Sci. Comp., 31 (2009), pp. 3781-3805.

7
M. BOLLHOEFER AND Y. SAAD, Multilevel preconditioners constructed from inverse-based ILUs, SIAM J. Sci. Comp., 27 (2006), pp. 1627-1650.

8
H. CALANDRA, S. GRATTON, X. PINEL, AND X. VASSEUR, An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media, CERFACS, Toulouse, France, Technical Report, 2012, TR/PA/12/2. Available at: http://www.cerfacs.fr/algor/reports/2012/TR_PA_12_2.pdf.

9
E. CHAN, M. HEIMLICH, A. PURKAYASTHA, AND R. A. VAN DE GEIJN, Collective communication: theory, practice, and experience, Concurrency and Computation: Practice and Experience, 19 (2007), no. 13, pp. 1749-1783.

10
J. J. DONGARRA AND D. W. WALKER, MPI: A standard message passing interface, Supercomputer, 12 (1996), no. 1, pp. 56-68.

11
A. DRUINSKY AND S. TOLEDO, How accurate is $ \mathrm{inv}(A)*b$ ?, CoRR, abs/1201.6035 (2012), 9 pages. Available at: http://arxiv.org/abs/1201.6035.

12
I. S. DUFF AND J. K. REID, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software, 9 (1983), pp. 302-325.

13
B. ENGQUIST AND A. MAJDA, Absorbing Boundary Conditions for the numerical simulation of waves, Mathematics of Computation, 31 (1977), pp. 629-651.

14
B. ENGQUIST AND L. YING, Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation, Commun. on Pure and App. Math., 64 (2011), pp. 697-735.

15
B. ENGQUIST AND L. YING, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers, SIAM J. Multiscale Modeling and Simulation, 9 (2011), pp. 686-710.

16
Y. ERLANGGA, C. VUIK, AND C. OOSTERLEE, On a class of preconditioners for solving the Helmholtz equation, Applied Numer. Math., 50 (2004), pp. 409-425.

17
Y. ERLANGGA, Advances in iterative methods and preconditioners for the Helmholtz equation, Archives Comput. Methods in Engin., 15 (2008), pp. 37-66.

18
O. G. ERNST AND M. J. GANDER, Why it is difficult to solve Helmholtz problems with classical iterative methods, in Numerical Analysis of Multiscale Problems, I. Graham, T. Hou, O. Lakkis, and R. Scheichl, eds., Springer-Verlag, New York, NY, 2011, pp. 325-363.

19
M. J. GANDER AND F. NATAF, AILU for Helmholtz problems: a new preconditioner based on the analytic parabolic factorization, in J. Comput. Acoustics, 9 (2001), pp. 1499-1506.

20
A. GEORGE, J. W. H. LIU, AND E. NG, Communication reduction in parallel sparse cholesky factorization on a hypercube, in Hypercube Multiprocessors, M. T. Heath, ed., SIAM, Philadelphia, PA, 1987, pp. 576-586.

21
A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp. 345-363.

22
L. GRASEDYCK AND W. HACKBUSCH, Construction and arithmetics of $ \mathcal{H}$ -matrices, Computing, 70 (2003), no. 4, pp. 295-334.

23
A. GUPTA, S. KORIC, AND T. GEORGE, Sparse matrix factorization on massively parallel computers, Proc. of Conf. on High Perf. Comp. Networking, Storage, and Anal. (SC '09), ACM, New York, NY, 2009. Article 1, 12 pages. Available at: http://doi.acm.org/10.1145/1654059.1654061.

24
A. GUPTA, G. KARYPIS, AND V. KUMAR, A highly scalable parallel algorithm for sparse matrix factorization, IEEE Trans. Parallel and Dist. Systems, 8 (1997), no. 5, pp. 502-520.

25
W. HACKBUSCH, A sparse matrix arithmetic based on $ \mathcal{H}$ -matrices. I. Introduction to $ \mathcal{H}$ -matrices, Computing, 62 (1999), no. 2, pp. 89-108.

26
M. JOSHI, A. GUPTA, G. KARYPIS, AND V. KUMAR, A high-performance two dimensional scalable parallel algorithm for solving sparse triangular systems, Proc. of Internat. Conf. on High Perf. Comp. (HiPC), (1997), pp. 137-143.

27
J. W. H. LIU, The multifrontal method for sparse matrix solution: theory and practice, SIAM Rev., 34 (1992), no. 1, pp. 82-109.

28
P.-G. MARTINSSON AND V. ROKHLIN, A fast direct solver for scattering problems involving elongated structures, J. Comput. Phys., 221 (2007), no. 1, pp. 288-302.

29
S. G. JOHNSON, Notes on perfectly matched layers (PMLs), Massachusetts Institute of Technology, Technical Report, 2007; updated 2010. Available at: http://www-math.mit.edu/~stevenj/18.369/pml.pdf.

30
J. POULSON, B. MARKER, R. A. VAN DE GEIJN, J. R. HAMMOND, AND N. A. ROMERO, Elemental: a new framework for distributed memory dense matrix computations, ACM Trans. Math. Software, Note: to appear.

31
P. RAGHAVAN, Domain-Separator Codes for the parallel solution of sparse linear systems, The Pennsylvania State University, University Park, PA, Technical Report, 2002, CSE-02-004.

32
P. RAGHAVAN, Efficient parallel sparse triangular solution using selective inversion, Parallel Processing Letters, 8 (1998), no. 1, pp. 29-40.

33
Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

34
R. SCHREIBER, A new implementation of sparse Gaussian elimination, ACM Trans. Math. Software, 8 (1982), no. 3, pp. 256-276.

35
R. SCHREIBER, Scalability of sparse direct solvers, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H. Liu, eds., Springer-Verlag, New York, NY, 1993, pp. 191-209.

36
V. SIMONCINI AND E. GALLOPOULOS, Convergence properties of block GMRES and matrix polynomials, Linear Algebra and its Applications, 247 (1996), pp. 97-119.

37
C. STOLK, A rapidly converging domain decomposition method for the Helmholtz equation, CoRR, abs/1208.3956 (2012), 14 pages. Available at: http://arxiv.org/abs/1208.3956.

38
P. TSUJI, B. ENGQUIST, AND L. YING, A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements, J. Comp. Phys, Note: to appear.

39
P. TSUJI AND L. YING, A sweeping preconditioner for Yee's finite difference approximation of time-harmonic Maxwell's Equations, J. Frontiers of Math. China, Note: to appear.

40
S. WANG, M. V. DE HOOP, AND J. XIA, On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver, Geophysical Prospecting, 59 (2011), pp. 857-873.

41
S. WANG, X. S. LI, J. XIA, Y. SITU, AND M. V. DE HOOP, Efficient scalable algorithms for hierarchically semiseparable matrices, Submitted to SIAM J. Sci. Comput., 2011. Available at: http://www.math.purdue.edu/~xiaj/work/parhss.pdf.

42
J. H. WILKINSON, Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, N. J., 1963.

43
J. XIA, S. CHANDRASEKARAN, M. GU, AND X. LI, Superfast multifrontal method for large structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), no. 3, pp. 1382-1411.




2014-08-20