next up previous [pdf]

Next: Gradient computation Up: Full waveform inversion (FWI) Previous: Conjugate gradient (CG) implementation

Fréchet derivative

Recall that the basic acoustic wave equation can be specified as

$\displaystyle \frac{1}{v^2(\textbf{x})}\frac{\partial^2 p(\textbf{x},t;\textbf{...
...tial t^2}-\nabla^2 p(\textbf{x},t;\textbf{x}_s)=f_s(\textbf{x},t;\textbf{x}_s).$ (91)

where $ f_s(\textbf{x},t;\textbf{x}_s)=f(t')\delta(\textbf{x}-\textbf{x}_s)\delta(t-t')$ . The Green's function $ \Gamma(\textbf{x},t;\textbf{x}_s,t')$ is defined by

$\displaystyle \frac{1}{v^2(\textbf{x})}\frac{\partial^2 \Gamma(\textbf{x},t;\te...
...ma(\textbf{x},t; \textbf{x}_s,t') =\delta(\textbf{x}-\textbf{x}_s)\delta(t-t').$ (92)

Thus the integral representation of the solution can be given by

\begin{displaymath}\begin{split}p(\textbf{x}_r,t; \textbf{x}_s)&=\int_V \mathrm{...
...f{x}_r,t;\textbf{x},0)*f(\textbf{x},t;\textbf{x}_s) \end{split}\end{displaymath} (93)

where $ *$ denotes the convolution operator.

A perturbation $ v(\textbf{x})\rightarrow v(\textbf{x})+\Delta v(\textbf{x})$ will produce a field $ p(\textbf{x},t;\textbf{x}_s)+\Delta p(\textbf{x},t;\textbf{x}_s)$ defined by

$\displaystyle \frac{1}{(v(\textbf{x})+\Delta v(\textbf{x}))^2}\frac{\partial^2 ...
...xtbf{x}_s)+\Delta p(\textbf{x},t;\textbf{x}_s)] =f_s(\textbf{x},t;\textbf{x}_s)$ (94)

Note that

$\displaystyle \frac{1}{(v(\textbf{x})+\Delta v(\textbf{x}))^2} =\frac{1}{v^2(\textbf{x})}-\frac{2\Delta v(\textbf{x})}{v^3(\textbf{x})}+O(\Delta^2 v(\textbf{x}))$ (95)

Eq. (94) subtracts Eq. (91), yielding

$\displaystyle \frac{1}{v^2(\textbf{x})}\frac{\partial^2 \Delta p(\textbf{x},t;\...
...x},t;\textbf{x}_s)]}{\partial t^2}\frac{2\Delta v(\textbf{x})}{v^3(\textbf{x})}$ (96)

Using the Born approximation, Eq. (96) becomes

$\displaystyle \frac{1}{v^2(\textbf{x})}\frac{\partial^2 \Delta p(\textbf{x},t;\...
...{x},t;\textbf{x}_s)}{\partial t^2}\frac{2\Delta v(\textbf{x})}{v^3(\textbf{x})}$ (97)

Again, based on integral representation, we obtain

$\displaystyle \Delta p(\textbf{x}_r,t; \textbf{x}_s)=\int_V \mathrm{d}\textbf{x...
...x},t;\textbf{x}_s)}{\partial t^2}\frac{2\Delta v(\textbf{x})}{v^3(\textbf{x})}.$ (98)


next up previous [pdf]

Next: Gradient computation Up: Full waveform inversion (FWI) Previous: Conjugate gradient (CG) implementation

2021-08-31