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ABSTRACT

Amplitude-preserving data processing is an important and challenging topic in
many scientific fields. The amplitude-variation details in seismic data are es-
pecially important because the amplitude variation is directly related with the
subsurface wave impedance and fluid characteristics. We propose a novel seismic
noise attenuation approach that is based on local plane-wave assumption of seis-
mic events and the amplitude preserving capability of the orthogonal polynomial
transform (OPT). The OPT is a way for representing spatially correlative seismic
data as a superposition of polynomial basis functions, by which the random noise
is distinguished from the useful energy by the high orthogonal polynomial coeffi-
cients. The seismic energy is the most correlative along the structural direction
and thus the OPT is optimally performed in a flattened gather. We introduce
in detail the flattening operator for creating the flattened dimension, where the
OPT can be applied subsequently. The flattening operator is created by deriving
a plane-wave trace continuation relation following the plane-wave equation. We
demonstrate that both plane-wave trace continuation and OPT can well preserve
the strong amplitude variation existing in seismic data. In order to obtain a
robust slope estimation performance in the presence of noise, a robust slope es-
timation approach is introduced to substitute the traditional method. A group
of synthetic, pre-stack and post-stack field seismic data are used to demonstrate
the potential of the proposed framework in realistic applications.

INTRODUCTION

Seismic noise attenuation is one of the most significant steps in the whole seismic
data processing and imaging workflow. It has great influence to many subsequent
processing tasks, such as amplitude-variation-offset inversion, reverse time migration,
full waveform inversion, and automatic interpretation for oil&gas detection (Huang
et al., 2016; Gao et al., 2016; Xue et al., 2016c,b; Wang et al., 2015; Gan et al., 2016;
Zeng et al., 2017; Asgedom et al., 2017; Qu et al., 2016; Zhang et al., 2017; Chen,
2018).

In the past several decades, a large number of algorithms have been developed
for seismic noise attenuation. Stacking the seismic data along the spatial directions,
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e.g., the offset direction, can enhance the energy of spatially coherent useful waveform
signals as well as mitigate the spatially incoherent random noise (Liu et al., 2009a;
Xie et al., 2016; Wu and Bai, 2018c). One of the commonly used state-of-the-art
algorithms is the prediction-based method, including t-x predictive filtering (Abma
and Claerbout, 1995), f-x deconvolution (Canales, 1984), the polynomial fitting based
approach (Liu et al., 2011), and non-stationary predictive filtering (Liu et al., 2012;
Liu and Chen, 2013). This type of methods utilize the predictive property of useful
signals along spatial direction to create a regression-like model for distinguishing
between signal and noise.

Another type of commonly used methods are based on data decomposition. This
type of methods assume that noisy seismic data can be decomposed into different
components where signal and noise are separated based on their frequency differ-
ence or morphological difference (Huang et al., 2017). Empirical mode decomposition
(EMD) (Huang et al., 1998; Chen, 2016) and its improved version, e.g., ensemble
empirical mode decomposition (EEMD) (Wu and Huang, 2009), complete ensemble
empirical mode decomposition (CEEMD) (Colominas et al., 2012), have been used
intensively for reducing the noise in seismic data (Chen et al., 2016a). Variational
mode decomposition was proposed by Dragomiretskiy and Zosso (2014) for substi-
tuting EMD because of its explicit control on the decomposition performance. It has
been utilized for noise attenuation in Liu et al. (2017) and for time-frequency anal-
ysis by Liu et al. (2016a). Regularized non-stationary decomposition (Yang et al.,
2014; Wu et al., 2016) is another decomposition method which is also based on a
solid mathematical model. Singular value decomposition (SVD) can also be used to
extract the most spatially coherent components from the multi-dimensional seismic
data (Siahsar et al., 2017).

Sparse transform based approaches assume that multi-dimensional seismic data
can be compressed in a sparse transformed domain, where the signal is represented
by high-amplitude coefficients and the noise is represented by small-amplitude co-
efficients (Gholami, 2013; Bai and Wu, 2018). Hence, by transforming data to the
sparse domain, a soft thresholding can be applied to reject those small-amplitude co-
efficients that correspond to noise, which is followed by an inverse transform from the
thresholded coefficients to time-space domain (Chen, 2017). This type of methods
are closely connected with the compressive sensing paradigm (Lorenzi et al., 2016).
Widely used sparse transforms are Fourier transform, curvelet transform (Candès
et al., 2006; Herrmann et al., 2007; Herrmann and Hennenfent, 2008; Wang et al.,
2011; Zu et al., 2017), seislet transform (Fomel and Liu, 2010; Chen and Fomel,
2015a; Gan et al., 2015a,b), shearlet transform (Kong et al., 2016), Radon transform
(Foster and Mosher, 1992), and a variety of sparse wavelet transforms (Mousavi and
Langston, 2016b; Anvari et al., 2017), e.g., synchrosqueezing (Daubechies et al., 2011;
Mousavi et al., 2016; Mousavi and Langston, 2016a, 2017) or empirical wavelet trans-
forms (Liu et al., 2016b), etc. Recently, the adaptive dictionary learning has gained a
lot of attention in the seismic data processing field (Chen, 2017; Wu and Bai, 2018b).
The dictionary learning based sparse representation differs from the traditional sparse
transforms in that the basis functions for the sparse transform are adaptively learned
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from the data itself, instead of being fixed in the traditional transforms.

Rank reduction methods are one of the most effective methods in the seismic data
processing community, which includes the Cadzow filtering (Trickett, 2008), singu-
lar spectrum analysis (Vautard et al., 1992; Wu and Bai, 2018a; Zhou et al., 2018),
damped singular spectrum analysis (Chen et al., 2016b; Zhang et al., 2016a,b), and
multi-step singular spectrum analysis (Zhang et al., 2016c). There are two least-
squares projection step in the damped singular spectrum analysis method. The first
step can be considered as a rank reduction method while the second step can be inter-
preted as a compensation step for the non-optimal performance of the rank-reduction
method, i.e., the approximated signal subspace in the traditional rank-reduction
framework is a mixture of both signal and noise subspaces. From a different as-
pect, Xue et al. (2016a) proposed a rank-increasing method for iteratively estimating
the spike-like noise instead of estimating signals in deblending of simultaneous-source
data (Zu et al., 2016a,b; Bai and Wu, 2017; Zhou and Han, 2018; Wu and Bai, 2018d;
Bai et al., 2018b,a).

Mean and median filters utilize the statistical difference between signal and noise
to reject the Gaussian white noise or impulsive noise (Liu et al., 2009b; Liu, 2013). In
addition to these classic noise attenuation methods, some advanced denoising meth-
ods have been proposed in recent years. Time-frequency peak filtering (Kahoo and
Siahkoohi, 2009; Lin et al., 2013, 2015) based approaches utilize the high-resolution
property of time-frequency transform to distinguish between useful signals and ran-
dom noise. Instead of developing a standalone denoising strategy, Chen and Fomel
(2015b) proposed a two-step denoising approach that tries to solve a long-existing
problem in almost all denoising approaches: the signal leakage problem. By initiat-
ing a new concept called local orthogonalization, Chen and Fomel (2015b) successfully
retrieved the coherent signals from the removed noise section to guarantee no signal
leakage in any denoising algorithms.

For all the aforementioned state-of-the-art noise attenuation algorithms, none of
them are specifically designed for preserving the strong amplitude-variation details in
seismic data. As we know, the amplitude variations in seismic data greatly affect the
subsurface oil & gas exploration and production. Hence, the amplitude preserving
capability is one of the backbone features we need to keep in mind when designing
a new denoising algorithm. In this paper, we are solving the serious problem that
is often neglected in traditional seismic data processing by proposing the plane-wave
orthogonal polynomial transform method. Here we want to clarify that the amplitude
variation we mention here refers to strong amplitude variation, not simply the edge
details, or weak signals that are often mentioned in the literature. We first introduce
the basic knowledge of the orthogonal polynomial transform (OPT), which is the key
component that brings us the amplitude-preserving capability in the proposed frame-
work. We then introduce the theory of plane-wave trace continuation that is used for
flattening the seismic events without damaging the amplitude information. We show
that both plane-wave trace continuation and OPT can well perserve the amplitude
variation details in the seismic data, which accounts for the superb performance of
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preserving the amplitude details in the real data applications. Considering the strong
influence of the slope estimation to the plane-wave flattening, we introduce a robust
slope estimation method that can substitute the traditional plane-wave destruction
(PWD) (Fomel, 2002) based methods in the presence of strong noise. A group of
synthetic, pre-stack and post-stack field seismic data are used for demonstrating the
performance of the proposed framework.

THEORY

Orthogonal polynomial transform

In a seismic profile, the amplitude of time t and space x can be expressed as:

A(t, x) =
M−1∑
j=0

Cj(t)Pj(x), (1)

where {Pj(x), j = 0, 1, 2, · · · ,M − 1} is a set of orthogonal polynomials and M is the
number of basis functions and {Cj(t), j = 0, 1, 2, · · · ,M − 1} is a set of coefficients.
The Pj(x) is a unit basis function that satisfies the condition:

Pj(x)Pi(x) = δij, (2)

where δij denotes the Kronecker delta. The spectrum defined by Cj(t) denotes the
energy distribution of the t−x domain data in the orthogonal polynomials transform
domain. Besides, the low-order coefficients represent the effective energy and the
high-order coefficients represent the random noise energy. We provide a detailed
introduction about how we construct the orthogonal polynomial basis function in
Appendix A.

In a matrix-multiplication form, equation 1 can be expressed as the following
equation

A = CP, (3)

where A is constructed from A(t, x), C is constructed from Cj(t), P is constructed
from Pj(x). A is known and P can be constructed using the way introduced in
Appendix A. The unknown is C. C can be obtained by inverting the equation 3

C = APH(PPH)−1, (4)

where [·]H denotes matrix tranpose. In this paper, we choose M = 20, which indi-
cates that we select 20 orthogonal polynomial basis function to represent the seismic
data. Hence, inverting equation PPH is simply inverting a 20 × 20 matrix and is
computationally efficient.

In the OPT method, we need to define the order of coefficients we want to preserve,
the process of which corresponds to applying a mask operator to the orthogonal poly-
nomial coefficients. Mask operator can be chosen to preserve low-order coefficients
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and reject high-order coefficients. It takes the following form:

Mτ (Cj(t)) =

{
Cj(t) for j ≤ τ
0 for j > τ

, (5)

where M denotes the mask operator, Cj(t) denotes the orthogonal polynomial coef-
ficients at time t and order j.

The coefficients after applying the mask operator 5 become

Ĉ =Mτ (C). (6)

The useful signals can be reconstructed by

Â = ĈP, (7)

where Â denotes the denoised data.

Plane-wave trace continuation

In this section, we will derive a plane-wave flattening operator so that the seismic data
can be flattened locally and the OPT can then be applied to the flattened gather.

The key question here is how to map the curved events into flattened events. We
do the data mapping by a recursively predicting strategy. Each trace in a seismic
gather can be predicted using neighbor traces. Given a reference trace, each trace
in the gather can predict the reference trace in some ways, e.g., by recursive trace
continuation. Ideally, arranging the predicted reference traces (from all other traces)
into a gather constructs a flattened gather. Next, we will introduce the theory of how
we predict traces following the plane-wave equation, which we call plane-wave trace
continuation.

For simplicity, we always treat the first trace in the gather as the reference trace.
To flatten the gather, we need to predict the first trace from all other traces and
arrange them together. In a brief mathematical way, predicting the first trace from
the jth (j 6= 1) trace can be expressed

d1 = P2,1P3,2 · · ·Pj,j−1dj (8)

where Pp,q denotes a prediction operator to predict trace dq from trace dp. Specif-
ically, Pp,p−1 denotes the prediction between two traces from right to left. In the
inverse process, the jth trace can be predicted in a similar recursive formula from left
to right:

dj = Pj−1,j · · ·P2,3P1,2d1. (9)

Predicting from the jth trace to j + 1th trace (or from the j + 1th trace to jth
trace) requires solving the plane-wave equation:

∂u

∂x
+ σ

∂u

∂t
= 0, (10)
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where u(t, x) is the seismic record and σ is local slope. In the case of the constant
local slope, equation 10 has the following solution:

u(t, x) = f(t− σ), (11)

where f is the waveform function. In the variable-slope case, we can solve equation
10 by discretizing it. Let uvp denote u(v∆t, p∆x), and then we obtain:

uv+1
p+1 − uv+1

p

2∆x
+
uvp+1 − uvp

2∆x

+ σvp

(
uv+1
p+1 − uvp+1

2∆t
+
uv+1
p − uvp

2∆t

)
= 0.

(12)

Rearranging the terms in equation 12, we get(
1

∆x
+
σvp
∆t

)
uv+1
p+1 +

(
− 1

∆x
+
σvp
∆t

)
uv+1
p +(

1

∆x
−
σvp
∆t

)
uvp+1 +

(
− 1

∆x
−
σvp
∆t

)
uvp = 0.

(13)

Then we have the following point-to-point recursion from uvp to uv+1
p+1:

uv+1
p+1 =

(
1

∆x
+
σvp
∆t

)−1 [(
1

∆x
−
σvp
∆t

)
uv+1
p +(

− 1

∆x
+
σvp
∆t

)
uvp+1 +

(
1

∆x
+
σvp
∆t

)
uvp

]
.

(14)

Equation 14 can be used for the continuation from the first trace to all other traces,
in a similar way, all other traces can predict the first trace by an inverse trace con-
tinuation process. Since the trace continuation process is achieved using the local
plane-wave assumption of seismic data, we call the relation in equation 14 the plane-
wave trace continuation relation.

Figure 1 shows an example of the trace prediction process. We start from the
first trace in a gather, and predict each trace in the gather from the first trace,
following a given local slope field. Figure 1(a) shows the initial status of the trace
prediction process, where only the first trace is shown. Following the slope field
shown in Figure 1(b), we can predict a complete gather from the first trace using the
plane-wave equation. The complete gather is shown in Figure 1(c). It is clear that
the morphology of the predicted gather is consistent with the local slope shown in
Figure 1(b). Figure 1(d) shows a flattened gather from the curved events shown in
Figure 1(c). We flatten the events by predicting the first trace from each trace shown
in Figure 1(c). For a clear view of the first trace, we plot it in Figure 1(e).

We then show an example in the presence of random noise. The noisy data is
simulated with d = s + n, where s is signal, i.e. the solution to a wave equation in
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some random medium. The signal has a certain mean and variance, and a certain
spatial and temporal correlation structure. n is the noise, for which, presumably the
expectation 〈n〉 is zero. The overall spatial variance of the noise is a certain number,
and its covariance with the signal is zero. The noise is distributed in the 2D plane
following a Gaussian rule and has no spatial correlation. Figure 2(a) shows the noisy
reference trace. The details of the noisy trace are shown in Figure 2(e). Following
a given slope field shown in 2(b), we predict a complete gather from the first trace,
and show the gather in Figure 2(c). It can be seen that the noise is preserved during
the prediction process. Figure 2(d) shows the flattened gather from Figure 2(c). We
can conclude from this test that trace prediction can preserve any component in the
starting trace.

We then use another example to show the amplitude preserving feature of the
flattening operator. Figure 3(a) shows a complete gather containing three curved
events and amplitude variation along the spatial direction. Figure 3(b) shows the
flattened gather from the curved events, where we can see that the amplitude variation
is well preserved during the trace prediction process.

Robust slope estimation

Another important factor in plane-wave orthogonal polynomial transform is the local
slope calculation. The accuracy of the slope estimation affects performance of the
flattening operation and the following OPT. In this part, we will introduce a robust
slope estimation method that is based on the Hilbert transform (Liu et al., 2015).

Rearranging equation 10 we get

σ = −
∂u
∂x
∂u
∂t

. (15)

Equation 15 can be further derived such that

σ = −
∂u
∂x
∂u
∂z

= −F
−1
x [HDX [Fxu]]

F−1t [HDT [Ftu]]
, (16)

where HDX is frequency response function of the partial derivative in the x direction,
and HDT is frequency response function of the partial derivative in the t direction.
Fx and Ft denote the Fourier transform along the x and t directions, respectively. It
can be straightforwardly derived that

σ = −Hx(u)

Ht(u)
, (17)

where Hx(u) denotes the Hilbert transform of u along x direction and Ht(u) denotes
the Hilbert transform of u along t direction.

Figure 4 shows a slope calculation test. We calculate the slope from the noisy
data using the traditional PWD method and the robust slope calculation method,
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Figure 1: Trace prediction for clean data. (a) Reference trace. (b) Slope field. (c)
Predicted gather from the reference trace. (d) Flattened gather by predicting the
reference trace from each trace in Figure (c). (e) First trace in Figure (a).
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(c) Predicted gather
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Figure 2: Trace prediction for noisy data. (a) Reference trace. (b) Slope field. (c)
Predicted gather from the reference trace. (d) Flattened gather by predicting the
reference trace from each trace in Figure (c). (e) First trace in Figure (a). Note that
during trace prediction, the noise is preserved as coherent signal.
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Figure 3: (a) Curved events. (b) Flattened events by predicting the first trace from
each trace in (a). Note that during trace prediction, the amplitude is well preserved.

respectively. As a comparison, an accurate slope estimation from the clean data using
the PWD algorithm is used to evaluate the robustness of different slope estimation
approaches in the case of noise. Figure 4a shows the clean data, and Figure 15 shows
the slope estimated from the clean data using the PWD algorithm, which is deemed
to be the accurate slope. Figure 4b shows the noisy data by adding some Gaussian
white noise. Figure 4d shows the slope calculated using the robust slope estimation.
It is salient that the slope estimated from the noisy data is fairly close to the accurate
slope field. However, using the traditional PWD algorithm, it is difficult to obtain
an acceptable slope estimation from the noisy data, as can be seen from the result
shown in Figure 4e. From this test, we conclude that the robust slope estimation can
be used to obtain robust slope estimation performance even in the presence of strong
random noise.

It is worth mentioning that, by equations 10 and 15, we do not consider the spatial
gradient of amplitude. In the case of smooth spatial amplitude change (e.g., small
spatial gradient), the slope estimation method also works, since the calculation is
done locally and the small spatial gradient almost has no influence. However, in
the case of sharp spatial amplitude change (e.g., large spatial gradient), the method
cannot be adopted. This drawback can be hopefully overcome in the future work.
In addition, the problem of spatial gradients of amplitude and the implications for
non-plane wave solutions was mentioned in Wielandt (1993).
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(a) (b)

(c) (d)

(e)

Figure 4: Slope calculation test. (a) Clean data. (b) Noisy data. (c) Slope calculated
from the clean data using PWD algorithm. (d) Slope calculated from the noisy data
using the robust slope calculation algorithm. (e) Slope calculated from the noisy data
using the PWD algorithm.
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Plane-wave orthogonal polynomial transform

We have introduced in detail the theory of plane-wave trace continuation, i.e., how we
predict an arbitrary trace in a seismic gather from a random starting trace. We have
shown that by discretizing the plane-wave equation. We can derive the spatial trace
continuation relation, which can be used for trace prediction. We have presented that
during trace continuation, the amplitude of seismic waveforms can be well preserved.
Regarding the slope estimation, which is an important factor in the plane-wave trace
continuation operator, we introduce the robust slope estimation approach. We also
show that the robust slope estimation approach can obtain robust slope estimation
in the presence of strong noise. Considering the amplitude-preserving capability of
the OPT in a flattened dimension, we can cascade the plane-wave trace continu-
ation operator and the OPT together to obtain a two-folds amplitude-preserving
performance during a complete workflow. Thus, we name the cascaded framework
as the plane-wave orthogonal polynomial transform. The complete framework for
noise attenuation using the plane-wave orthogonal polynomial transform is shown in
Algorithm 1.
Algorithm 1: Plane-wave orthogonal polynomial transform(D, τ)
1 Input: Noisy data D. Order of coefficients to be preserved τ.
2 Output: Denoised data D.
3 Forward plane-wave flattening : D̂ = PWF (D)
4 Forward OPT : C = OPT (D̂)
5 Mask : Ĉ =M(C, τ)
6 Inverse OPT : D̂ = IOPT (Ĉ)
7 Inverse plane-wave flattening : D = IPWF (D̂)

The forward OPT corresponds to inverting PH(PPH)−1. The inverse OPT cor-
responds to multiplying the orthogonal polynomial coefficients by P. In algorithm 1,
the detailed implementations of the forward plane-wave flattening operator and the
inverse plane-wave flattening operator are shown in algorithms 2 and 3, respectively.
Algorithm 2: Plane-wave flattening(D)
1 Input: Matrix containing curved events D.
2 Output: Matrix containing flattened events D̂.
3 Setting the first trace as the reference trace.
4 for n← 1, 2, . . . , N
5 do
6 Predict the first trace : D̂(i) = PWTC (D(i), 1)

Algorithm 3: Inverse plane-wave flattening(D)
1 Input: Matrix including flattened events D.
2 Output: Matrix including curved events D̂.
3 Setting the first trace as the reference trace.
4 for n← 1, 2, . . . , N
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5 do
6 Predict the first trace : D̂(i) = PWTC (D(i),−1)

In algorithms 2 and 3, note that N denotes the number of spatial traces. 1 and
−1 in the operator PWTC() denote predicting from a trace to the first trace and
predicting the first trace to another trace, respectively. D(i) and D̂(i) denote the ith
column (or trace) in the matrix D and D̂.

EXAMPLES

The first example is a synthetic example, as shown in Figure 5. We apply the
Karhunen-Loève (KL) filtering method (Jones and Levy, 1987) and the proposed
method to a flattened dataset with strong amplitude variation. Figure 5a shows the
clean data, and Figure 14b shows the noisy data. Figures 5b and 5c show the denoised
data using the KL filtering method and the proposed method, respectively. Figures 5e
and 5f show the removed random noise using two approaches. We can observe clearly
from Figures 5b and 5c that the KL filtering causes significant damages to the events,
while the proposed method preserves the amplitude-variation details successfully.

In order to compare the amplitude between different seismic profiles in detail,
we compare the amplitude for a single trace from each section shown in Figure 5.
The trace is chosen as the 20th trace in each section of Figure 5. The comparison is
presented in Figure 6a. A zoom-in comparison is shown in Figure 6b. The black line
is from the clean data. The red line is from the noisy data. The blue line corresponds
to the KL method. The green line corresponds to the proposed method. It is apparent
that the green line is very close to the black line while the blue line deviates from the
black line too much in most areas. This trace amplitude comparison further confirms
the superior performance of the proposed algorithm.

In order to numerically compare the denoising performance, we use the commonly
used signal-to-noise ratio (SNR) defined as follows to quantitatively measure the
performance (Chen and Fomel, 2015b):

SNR = 10 log10

‖s‖22
‖s− ŝ‖22

. (18)

where s denotes the noise-free data and ŝ denotes the denoised data. In addition, to
quantitatively measure the noise removal in the case of no discernable signal damage,
we define the metric as the root-mean-square (RMS)

RMS = ‖n‖2, (19)

where n denotes the removed noise. Although the amplitude range varies a lot for dif-
ferent data sets, the RMS metric provides us a quantitative way to evaluate the noise
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removal performance for one specific data set among different denoising methods, e.g.,
how much better method A performs than method B.

In order to compare the performance of two methods in different noise level. We
increase the variance of noise from 0.1 to 1.0, and calculate the SNRs of denoised data
of both methods and show them in Table 1. To see the varied SNRs more vividly,
we plot the data from Table 1 in Figure 7. The black line shows the SNRs varying
with input noise variances. The red line shows the SNRs corresponding to the KL
method. The blue line shows the SNRs of the OPT method. It is obvious that both
methods obtain large SNR improvement for all noise levels and the SNRs of the OPT
method are always higher than the KL method. We can also observe clearly that the
difference between the proposed OPT method and the KL method increases as noise
variance becomes larger, which indicates that the proposed method outperforms the
KL method more when the seismic data becomes noisier.

Table 1: Comparison of SNRs in dB for different input noise level. The diagram
corresponding to this table is shown in Figure 7.

Noise variance Input data (dB) KL (dB) OPT (dB)
0.1 2.60 13.08 17.58
0.2 -3.42 6.92 11.56
0.3 -6.94 3.05 8.04
0.4 -9.44 0.19 5.54
0.5 -11.38 -1.89 3.60
0.6 -12.97 -3.54 2.02
0.7 -14.30 -4.94 0.68
0.8 -15.46- -6.17 -0.48
0.9 -16.49 -7.26 -1.50
1.0 -17.40 -8.25 -2.42

For computational cost comparison, the KL method takes 0.62s for processing the
data shown in Figure 14b while the proposed algorithm takes 0.01s. The data contains
151 samples and 61 traces. The computation is done on a PC station equipped with
an Intel Core i7 CPU clocked at 3.1 GHz and 16 GB of RAM. Note that both KL
and OPT methods require the events to be flattened in order to obtain the best
performance, thus we only compare the cost difference in the filtering stage.

The second example is a pre-stack field data example. Figure 8a shows the orig-
inal data. Figures 8b, 8c, and 8d show the denoised data using EMD method, KL
method, and the proposed method, respectively. Figures 9 shows the removed noise
sections using three approaches. Figure 9a shows that some low-frequency energy is
damaged while Figure 9c shows that the removed noise is stronger. In this exam-
ple, the calculated RMSs for Figures 9a(a), 9a(b), and 9a(c) are 389.49, 449.22, and
506.26, respectively. Thus, the proposed method removes 12.7% more noise than the
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KL method and 30.0% more noise than the EMD method.

In order to comprehensively compare three different approaches, we zoomed four
frame boxes (A,B,C,D) to show the detailed difference. Figure 10 shows the compari-
son from frame box A. It is obvious that the KL approach causes some residual noise
while EMD and OPT approaches obtain good results, more careful observation can
show that the proposed method can obtain a more coherent image. Figure 11 shows
the comparison for frame box B. It is obvious that OPT method obtains the clean-
est result. Figure 12 shows the comparison for frame box C. It is still obvious that
OPT method can make the events more coherent and more importantly, preserve the
amplitude-variation-with-offsets (AVO) details well. Figure 13 shows the comparison
for frame box D. Both Figures 13b and 13c show obvious amplitude artifacts while
the OPT result in Figure 13d shows nearly zero amplitude in the zoomed section.

For this example, we also demonstrate the flattening process in Figure 14. Figure
14b shows the flattened gather from the original data shown in Figure 14a (or Fig-
ure 8a). It is clear that most events have been flattened well. Figure 14c shows the
reconstructed data from the inverse flattening. The data is almost the same as the
original data. Figure 14d shows the difference between the reconstructed data and
the original data. The error section is almost zero everywhere, which demonstrates
that the flattening process does not introduce extra error. Figure 15 shows the slope
estimated from the original data. We also show a detailed comparison between differ-
ent data in the flattened dimension in Figure 16. A zoomed comparison among the
flattened gathers after filtering is shown in Figure 17, where we can conclude that the
proposed method obtains the smoothest result while best preserving the reflection
amplitude.

The next example is a real post-stack seismic image shown in Figure 18a. There
are 140 spatial traces and 194 temporal samples. The seismic image contains highly
curved events and the amplitude along the events is not continuous, which will make
the seismic interpretation difficult. After using three approaches, the EMD method,
the KL method, and the proposed method, the denoised images are shown in Figures
18b, 18c, and 18d, respectively. It is obvious that the proposed OPT based filter-
ing approach can obtain a well smoothed seismic image with the continuity and the
amplitude of events enhanced greatly. The EMD based approach, however, cannot
effectively smooth the seismic events, and still leaves a lot of discontinuity in the im-
age. The KL filtering approach obtains a much better filtering performance compared
with the EMD based approach, however, it is not as successful as the performance of
the proposed OPT based approach.

We can find the mechanism that caused the tremendous difference of denoised
images from the comparison in the flattened domain, as shown in Figure 19. It is
even more obvious that the OPT based approach obtains a nearly perfect smoothing
along the flattened images (equivalent to along the structure in the original domain).
The EMD based approach can achieve some smoothing, but remains less continuous
than both KL and OPT based approaches. In this example, the calculated RMSs of
removed noise are 0.015 for EMD method, 0.016 for KL method, and 0.019 for the
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proposed method. Thus, the proposed method removes 18.7% more noise than the
KL method and 25.0% more noise than the EMD method.

The next field data example is shown in Figure 20a, which is also a post-stack
data and contains weak seismic reflection events. Figures 20b, 20c, and 20d show the
denoised results using three different methods. For this example, we further compare
the performance of the proposed method with that of the f − x predictive filtering
method and the singular-spectrum analysis (SSA) method (Vautard et al., 1992).
Figure 21 shows the corresponding noise sections. For this example, it seems that
all three methods obtain much improved results and the performance of different
methods is quite similar. In order to compare the performance in detail and more
fairly, we plot the F −K spectra of different denoised results. The F −K spectrum
of the raw data is shown in Figure 22a. The F −K spectra corresponding to different
methods are shown in Figures 22b, 22c, and 22d. Comparing the F −K spectra of
different methods and F −K spectrum of the raw data, it is easy to find that both
f−x predictive filtering method and the proposed method preserve the useful signals
well, but the f − x predictive filtering method has some residual spectrum energy
around the edges (large wavenumber components). SSA method causes significant
damages to useful signals.

In this example, we also calculate the local similarity between the denoised data
and removed noise for different methods. The local similarity is an effective way to
detect the lost signals in the removed noise. High local similarity indicates that in
the noise section, there are significantly similar components as the useful signals, i.e.,
there is lost energy in the noise. The calculation of local similarity is provided in
Appendix B. The local similarity maps for different methods are shown in Figure 23,
where we can clearly observe the high similarity anomalies in the f − x predictive
filtering and SSA results. Although there are also some similarity anomalies in the
result from the proposed method, the similarity value is relatively lower than the
other two methods. From this test we conclude that the proposed method causes less
damage to useful energy.

We also plot a comparison of the average spectrum of all the traces for different
data in Figure 24. The green line corresponds to the proposed approach. The red line
corresponds to f−x predictive filtering method. The blue line corresponds to the SSA
method. It is quite obvious that the energy preservation of the proposed method in
signal frequency band (20∼60 Hz) is quite successful. The proposed method mitigates
more high-frequency noise than f −x predictive filtering method, which confirms the
observation from Figure 22. We admit that the high-frequency noise of the proposed
method is slightly more than the SSA method. However, the proposed method pre-
serves more useful energy than the other two methods in the spectrum. This field
data further confirms the superior performance of the presented algorithm.

In this example, to compare the noise removal performance, we need to make sure
the removed noise sections do not contain discernable signal energy, as required by
the metric defined in equation 19, and have to adjust the parameters for the f−x and
SSA methods. The denoised data and the removed noise sections using the adjusted
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parameters are shown in Figure 25. In this case, the calculated RMSs for Figures
25(d), 25(e), and 25(f) are 0.059, 0.071, and 0.086, respectively. Thus, the proposed
method removes 21.1% more noise than the SSA method and 38.0% more noise than
the f − x method.

(a) (b) (c)

(d) (e) (f)

Figure 5: Synthetic example. (a) Clean data. (b) Denoised data using KL filtering.
(c) Denoised data using the proposed method. (d) Noisy data. (e) Noise section
corresponding to (b). (f) Noise section corresponding to (c).

CONCLUSIONS

The orthogonal polynomial transform (OPT) can be used to effectively separate spa-
tially correlative signals and spatially incoherent noise without losing waveform am-
plitude. To create a flattened dimension where the OPT can be optimally applied,
we derive a plane-wave trace continuation relation for flattening the curved seismic
events. Trace prediction in the flattening process and the subsequent OPT are both
demonstrated to be amplitude-preserving. The robust slope estimation approach
can obtain more robust performance than the state-of-the-art plane-wave destruction
(PWD) method in the presence of strong noise. The proposed framework has been
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(a) (b)

Figure 6: Comparison of the 20th trace amplitude of each seismic gather in Figure
5. The black line is from the clean data. The red line is from the noisy data. The
blue line corresponds to the KL method. The green line corresponds to the proposed
method. (a) Comparison of the whole trace. (b) Zoom-in comparison. Note that the
black and green lines are very close to each other, thus the reconstruction error using
the proposed approach is much less than the traditional method for most parts.
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Figure 7: SNR diagrams of synthetic example.
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(a) (b)

(c) (d)

Figure 8: Denoising comparison. (a) Raw noisy data. (b) Filtered using EMD
method. (c) Filtered using KL method. (d) Filtered using the proposed method.
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(a) (b)

(c)

Figure 9: Noise comparison. (b) Removed noise using EMD method. (b) Removed
noise using KL method. (c) Removed noise using the proposed method.
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(a) (b)

(c) (d)

Figure 10: Zoomed frame box A from Figure 8. (a) Zoomed noisy field data. (b)
Zoomed filtered data using EMD method. (c) Zoomed filtered data using KL method.
(d) Zoomed filtered data using the proposed method.
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(a) (b)

(c) (d)

Figure 11: Zoomed frame box B from Figure 8. (a) Zoomed noisy field data. (b)
Zoomed filtered data using EMD method. (c) Zoomed filtered data using KL method.
(d) Zoomed filtered data using the proposed method.
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(a) (b)

(c) (d)

Figure 12: Zoomed frame box C from Figure 8. (a) Zoomed noisy field data. (b)
Zoomed filtered data using EMD method. (c) Zoomed filtered data using KL method.
(d) Zoomed filtered data using the proposed method.
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(a) (b)

(c) (d)

Figure 13: Zoomed frame box D from Figure 8. (a) Zoomed noisy field data. (b)
Zoomed filtered data using EMD method. (c) Zoomed filtered data using KL method.
(d) Zoomed filtered data using the proposed method.
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(a) (b)

(c) (d)

Figure 14: Pre-stack field data example. (a) Field data. (b) Flattened field data. (c)
Reconstructed field data. (d) Reconstruction error.
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Figure 15: Local slope estimation of the pre-stack field data.

applied to several synthetic, field pre-stack and post-stack seismic data and are shown
to better preserve the amplitude variations than other alterative methods.
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APPENDIX

Appendix A: Construction of polynomial transforms

Let {Pj(x)}, j = 0, 1, · · · , N denote a set of polynomials, which satisfies the orthog-
onality condition:

N∑
i=0

Pk(xi)Pj(xi) = δj,k. (20)
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(a) (b)

(c) (d)

Figure 16: Denoising comparison in the flattened dimension. (a) Raw noisy data. (b)
Filtered using EMD method. (b) Filtered using KL method. (c) Filtered using the
proposed method.
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(a) (b)

(c) (d)

Figure 17: Zoomed sections from Figure 16. (a) Zoomed noisy field data. (b) Zoomed
filtered data using EMD method. (c) Zoomed filtered data using KL method. (d)
Zoomed filtered data using the proposed method.
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(a) (b)

(c) (d)

Figure 18: First post-stack field data example. (a) Field data. (b) Filtered data
using EMD method. (c) Filtered data using KL method. (d) Filtered data using the
proposed method.
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(a) (b)

(c) (d)

Figure 19: Comparison in the flattened domain. (a) Field data. (b) Filtered data
using EMD method. (c) Filtered data using KL method. (d) Filtered data using the
proposed method.
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(a) (b)

(c) (d)

Figure 20: Denoising comparison for the second post-stack field data. (a) The second
post-stack field data. (b) Filtered data using f − x predictive filtering. (c) Filtered
data using SSA. (d) Filtered data using the proposed method.
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(a) (b)

(c)

Figure 21: Noise comparison for the second post-stack field data. (a) Removed noise
using f − x predictive filtering. (b) Removed noise using SSA. (c) Removed noise
using the proposed method.
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(a) (b)

(c) (d)

Figure 22: Spectra comparison. (a)Spectrum of the second post-stack seismic data.
(b) Spectrum using f −x predictive filtering. (c) Spectrum using SSA. (d) Spectrum
using the proposed method.
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(a) (b)

(c)

Figure 23: Comparison of local similarity between denoised data and removed noise.
(a) Local similarity using f − x predictive filtering. (b) Local similarity using SSA.
(c) Local similarity using the proposed method.
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Figure 24: Comparisons of the average spectrum of all the traces. The black line
denotes the average spectrum of raw data. The green line corresponds to the proposed
approach. The red line corresponds to f − x predictive filtering method. The blue
line corresponds to the SSA method.

(a) (b) (c)

(d) (e) (f)

Figure 25: Comparison for the second post-stack field data after adjusting the pa-
rameters. (a) Filtered data using f − x predictive filtering. (b) Filtered data using
SSA. (c) Filtered data using the proposed method. (d) Removed noise using f − x
predictive filtering. (e) Removed noise using SSA. (f) Removed noise using the pro-
posed method. In this case, the calculated RMSs for (d),(e), and (f) are 0.059, 0.071,
and 0.086, respectively. Thus, the proposed method removes 21.1% more noise than
the SSA method and 38.0% more noise than the f − x predictive filtering method.
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It is known that as polynomials, Pj(xi) can be expressed

Pj(xi) =

j∑
k=0

ajkx
k
i , (21)

ajk denotes polynomial coefficients. It is natural that xj can be expressed based on
superposition of different polynomials:

xj =

j∑
k=0

βjkPk(x). (22)

Based on equations 22 and 23, jth polynomial can be expressed as lower-order poly-
nomials

Pj(xi) =

{
xj −

j−1∑
k=0

βjkPk(xi)

}
/βjj, (23)

Get squares of equation 22 and combine with equation 20, we can obtain

βjj =

√√√√ N∑
i=0

x2ji −
j−1∑
k=0

β2
jk (24)

and

βjk =
N∑
i=0

xjiPk(xi). (25)

From equations 23 to 25, we can construct the set of polynomials. We first get
β00 =

√
N based on equation 24, and thus P0 = 1/β00, then compute β10,β11 to

construct P1. In the same way, we can construct all polynomials.

Appendix B: local similarity

Local similarity between vectors a and b is defined as:

c =
√

c1 ◦ c2 (26)

where ◦ denotes dot product, c1 and c2 come from two least-squares minimization
problems:

c1 = arg min
c1
‖a−Bc1‖22 (27)

c2 = arg min
c2
‖b−Ac2‖22 (28)

where A is a diagonal operator composed of the elements of a, B is a diagonal
operator composed of the elements of b. Note that in equations 26-28, a, b, and
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c denote vectorized 2D matrices. Equations 27 and 28 can be solved using shaping
regularization with a local-smoothness constraint:

c1 = [λ21I + T(BTB− λ21I)]−1TBTb, (29)

c2 = [λ22I + T(ATA− λ22I)]−1TATa, (30)

where T is a smoothing operator and λ1 and λ2 are two parameters controlling the
physical dimensionality and enabling fast convergence when inversion is implemented
iteratively. These two parameters can be chosen as λ1 = ‖BTB‖2 and λ2 = ‖ATA‖2.

REFERENCES

Abma, R., and J. Claerbout, 1995, Lateral prediction for noise attenuation by t− x
and f − x techniques: Geophysics, 60, 1887–1896.

Anvari, R., M. A. N. Siahsar, S. Gholtashi, A. R. Kahoo, and M. Mohammadi,
2017, Seismic random noise attenuation using synchrosqueezed wavelet transform
and low-rank signal matrix approximation: IEEE Transactions on Geoscience and
Remote Sensing, doi: 10.1109/TGRS.2017.2730228.

Asgedom, E. G., O. C. Orji, and W. Soellner, 2017, Rough-sea deghosting of single-
sensor seismic data using the knowledge of the sea surface shape: Journal of Seismic
Exploration, 26, 105–123.

Bai, M., and J. Wu, 2017, Efficient deblending using median filtering without cor-
rect normal moveout - with comparison on migrated images: Journal of Seismic
Exploration, 26, 455–479.

——–, 2018, Seismic deconvolution using iteartive transform-domain sparse inversion:
Journal of Seismic Exploration, 27, no. 2, 103–116.

Bai, M., J. Wu, J. Xie, and D. Zhang, 2018a, Least-squares reverse time migration
of blended data with low-rank constraint along structural direction: Journal of
Seismic Exploration, 27, no. 1, 29–48.

Bai, M., J. Wu, S. Zu, and W. Chen, 2018b, A structural rank reduction opera-
tor for removing artifacts in least-squares reverse time migration: Computers and
Geosciences, 117, 9–20.

Canales, L., 1984, Random noise reduction: 54th Annual International Meeting, SEG,
Expanded Abstracts, 525–527.

Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006, Fast discrete curvelet
transforms: SIAM, Multiscale Modeling and Simulation, 5, 861–899.

Chen, W., Y. Chen, J. Xie, S. Zu, and Y. Zhang, 2016a, Multiples attenuation using
trace randomization and empirical mode decomposition: 86th Annual International
Meeting, SEG, Expanded Abstracts, 4498–4502.

Chen, Y., 2016, Dip-separated structural filtering using seislet thresholding and adap-
tive empirical mode decomposition based dip filter: Geophysical Journal Interna-
tional, 206, 457–469.

——–, 2017, Fast dictionary learning for noise attenuation of multidimensional seismic
data: Geophysical Journal International, 209, no. 1, 21–31.



GJI - Chen 2017 38Plane-wave orthogonal polynomial transform

——–, 2018, Automatic microseismic event picking via unsupervised machine learn-
ing: Geophysical Journal International, 212, no. 1, 88–102.

Chen, Y., and S. Fomel, 2015a, EMD-seislet transform: 85th Annual International
Meeting, SEG, Expanded Abstracts, 4775–4778.

——–, 2015b, Random noise attenuation using local signal-and-noise orthogonaliza-
tion: Geophysics, 80, WD1–WD9.

Chen, Y., D. Zhang, Z. Jin, X. Chen, S. Zu, W. Huang, and S. Gan, 2016b, Simulta-
neous denoising and reconstruction of 5D seismic data via damped rank-reduction
method: Geophysical Journal International, 206, no. 3, 1695–1717.

Colominas, M. A., G. Schlotthauer, M. E. Torres, and P. Flandrin, 2012, Noise-
assisted EMD methods in action: Adv. Adapt. Data Anal., 4, 1250025.

Daubechies, I., J. Lu, and H.-T. Wu, 2011, Synchrosqueezed wavelet transforms: An
empirical mode decomposition-like tool: Applied and Computational Harmonic
Analysis, 30, 243–261.

Dragomiretskiy, K., and D. Zosso, 2014, Variational mode decomposition: IEEE T.
Signal Proces., 62, 531–544.

Fomel, S., 2002, Application of plane-wave destruction filters: Geophysics, 67, 1946–
1960.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75,
V25–V38.

Foster, D. J., and C. C. Mosher, 1992, Suppression of multiple reflections using the
radon transform: Geophysics, 57, 386–395.

Gan, S., S. Wang, Y. Chen, and X. Chen, 2015a, Deblending of distance separated
simultaneous-source data using seislet frames in the shot domain: SEG expanded
abstracts: 85th Annual international meeting, 65–70.

——–, 2015b, Seismic data reconstruction via fast projection onto convex sets in
the seislet transform domain: SEG expanded abstracts: 85th Annual international
meeting, 3814–3819.

Gan, S., S. Wang, Y. Chen, S. Qu, and S. Zu, 2016, Velocity analysis of simultaneous-
source data using high-resolution semblance-coping with the strong noise: Geophys-
ical Journal International, 204, 768–779.

Gao, Z., Z. Pan, and J. Gao, 2016, Multimutation differential evolution algorithm and
its application to seismic inversion: IEEE Transactions on Geoscience and Remote
Sensing, 54, no. 6, 3626–3636.

Gholami, A., 2013, Sparse time–frequency decomposition and some applications:
IEEE Transactions on Geoscience and Remote Sensing, 51, 3598–3604.

Herrmann, F. J., U. Böniger, and D. J. Verschuur, 2007, Non-linear primary-multiple
separation with directional curvelet frames: Geophysical Journal International,
170, 781–799.

Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric seismic data recovery
with curvelet frames: Geophysical Journal International, 173, 233–248.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C.
Tung, and H. H. Liu, 1998, The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis: Proceeding of the
Royal Society of London Series A, 454, 903–995.



GJI - Chen 2017 39Plane-wave orthogonal polynomial transform

Huang, W., R. Wang, S. Zu, and Y. Chen, 2017, Low-frequency noise attenuation
in seismic and microseismic data using mathematical morphological filtering: Geo-
physical Journal International, 211, 1318–1340.

Huang, Z., J. Zhang, T. Zhao, and Y. Sun, 2016, Synchrosqueezing S-transform and
its application in seismic spectral decomposition: IEEE Transactions on Geoscience
and Remote Sensing, 54, no. 2, 817–825.

Jones, I. F., and S. Levy, 1987, Signal-to-noise ratio enhancement in multichannel
seismic data via the karhunen-loeve transform: Geophysical Prospecting, 35, 12–
32.

Kahoo, A., and T. R. Siahkoohi, 2009, Random noise suppression from seismic data
using time frequency peak filtering: 71st Annual International Conference and
Exhibition, EAGE, Extended Abstracts.

Kong, D., Z. Peng, Y. He, and H. Fan, 2016, Seismic random noise attenuation using
directional total variation in the shearlet domain: Journal of Seismic Exploration,
25, no. 4, 321–338.

Lin, H., Y. Li, H. Ma, B. Yang, and J. Dai, 2015, Matching-pursuit-based spatial-
trace time-frequency peak filtering for seismic random noise attenuation: IEEE
Geoscience and Remote Sensing Letters, 12, 394–398.

Lin, H., Y. Li, B. Yang, and T. Ma, 2013, Random denoising and signal nonlinearity
approach by time-frequency peak filtering using weighted frequency reassignment:
Geophysics, 78, V229–V237.

Liu, C., C. Chen, D. Wang, Y. Liu, S. Wang, and L. Zhang, 2015, Seismic dip
estimation based on the two-dimensional hilbert transform and its application in
random noise attenuation: Applied Geophysics, 12, 55–63.

Liu, G., and X. Chen, 2013, Noncausal f-x-y regularized nonstationary prediction
filtering for random noise attenuation on 3D seismic data: Journal of Applied
Geophysics, 93, 60–66.

Liu, G., X. Chen, J. Du, and J. Song, 2011, Seismic noise attenuation using nonsta-
tionary polynomial fitting: Applied Geophysics, 8, 18–26.

Liu, G., X. Chen, J. Du, and K. Wu, 2012, Random noise attenuation using f-x
regularized nonstationary autoregression: Geophysics, 77, V61–V69.

Liu, G., S. Fomel, L. Jin, and X. Chen, 2009a, Stacking seismic data using local
correlation: Geophysics, 74, V43–V48.

Liu, W., S. Cao, and Y. Chen, 2016a, Applications of variational mode decomposition
in seismic time-frequency analysis: Geophysics, 81, no. 5, V365–V378.

——–, 2016b, Seismic time-frequency analysis via empirical wavelet transform: IEEE
Geoscience and Remote Sensing Letters, 13, 28–32.

Liu, W., S. Cao, and Z. Wang, 2017, Application of variational mode decomposition
to seismic random noise reduction: Journal of Geophysics and Engineering, 14.

Liu, Y., 2013, Noise reduction by vector median filtering: Geophysics, 78, V79–V87.
Liu, Y., C. Liu, and D. Wang, 2009b, A 1d time-varying median filter for seismic

random, spike-like noise elimination: Geophysics, 74, V17–V24.
Lorenzi, L., F. Melgani, and G. Mercier, 2016, Missing-area reconstruction in mul-

tispectral images under a compressive sensing perspective: IEEE Transactions on
Geoscience and Remote Sensing, 51, no. 7, 3998–4008.



GJI - Chen 2017 40Plane-wave orthogonal polynomial transform

Mousavi, S. M., and C. A. Langston, 2016a, Adaptive noise estimation and suppres-
sion for improving microseismic event detection: Journal of Applied Geophysics,
132, 116–124.

——–, 2016b, Hybrid seismic denoising using higher-order statistics and improved
wavelet block thresholding: Bulletin of the Seismological Society of America, 106,
no. 4, 1380–1393.

——–, 2017, Automatic noise-removal/signal-removal based on general cross-
validation thresholding in synchrosqueezed domain and its application on earth-
quake data: Geophysics, 82, no. 4, V211–V227.

Mousavi, S. M., C. A. Langston, and S. P. Horton, 2016, Automatic microseismic
denoising and onset detection using the synchrosqueezed continuous wavelet trans-
form: Geophysics, 81, no. 4, V341–V355.

Qu, S., D. Verschuur, and Y. Chen, 2016, Full waveform inversion using an automatic
directional total variation constraint: 78th Annual International Conference and
Exhibition, EAGE, Extended Abstracts, DOI: 10.3997/2214–4609.201701340.

Siahsar, M. A. N., S. Gholtashi, E. Olyaei, W. Chen, and Y. Chen, 2017, Simultaneous
denoising and interpolation of 3D seismic data via damped data-driven optimal
singular value shrinkage: IEEE Geoscience and Remote Sensing Letters, 14, no. 7,
1086–1090.

Trickett, S., 2008, F-xy cadzow noise suppression: CSPG CSEG CWLS Convention,
303–306.

Vautard, R., P. Yiou, and M. Ghil, 1992, Singular-spectrum analysis: A toolkit for
short, noisy chaotic signals: Physica D: Nonlinear Phenomena, 58, 95–126.

Wang, B., R. Wu, X. Chen, and J. Li, 2015, Simultaneous seismic data interpo-
lation and denoising with a new adaptive method based on dreamlet transform:
Geophysical Journal International, 201, 1180–1192.

Wang, Y., J. Cao, and C. Yang, 2011, Recovery of seismic wavefields based on com-
pressive sensing by an l1-norm constrained trust region method and the piecewise
random subsampling: Geophysical Journal International, 187, 199–213.

Wielandt, E., 1993, Propagation and structural interpretation of non-plane waves:
Geophysical Journal International, 113, 45–53.

Wu, G., S. Fomel, and Y. Chen, 2016, Data-driven time-frequency analysis of seismic
data using regularized nonstationary autoregression: 86th Annual International
Meeting, SEG, Expanded Abstracts, 1700–1705.

Wu, J., and M. Bai, 2018a, Adaptive rank-reduction method for seismic data recon-
struction: Journal of Geophysics and Engineering, 15, 1688.

——–, 2018b, Attenuating seismic noise via incoherent dictionary learning: Journal
of Geophysics and Engineering, 15, 1327.

——–, 2018c, Fast principal component analysis for stacking seismic data: Journal of
Geophysics and Engineering, 15, 295–306.

——–, 2018d, Incoherent dictionary learning for reducing crosstalk noise in least-
squares reverse time migration: Computers and Geosciences, 114, 11–21.

Wu, Z., and N. E. Huang, 2009, Ensemble empirical mode decomposition: A noise-
assisted data analysis method: Advances in Adaptive Data Analysis, 1, 1–41.

Xie, J., B. Di, J. Wei, Q. Xie, S. Zu, and Y. Chen, 2016, Stacking using trun-



GJI - Chen 2017 41Plane-wave orthogonal polynomial transform

cated singular value decomposition and local similarity: 78th Annual Interna-
tional Conference and Exhibition, EAGE, Extended Abstracts, DOI: 10.3997/2214–
4609.201601325.

Xue, Y., F. Chang, D. Zhang, and Y. Chen, 2016a, Simultaneous sources separation
via an iterative rank-increasing method: IEEE Geoscience and Remote Sensing
Letters, 13, no. 12, 1915 – 1919.

Xue, Z., N. Alger, and S. Fomel, 2016b, Full-waveform inversion using smoothing
kernels: SEG expanded abstracts: 86th Annual international meeting, 1358–1363.

Xue, Z., T. Zhu, S. Fomel, and J. Sun, 2016c, Q-compensated full-waveform inversion
using constant-q wave equation: SEG expanded abstracts: 86th Annual interna-
tional meeting, 1063–1068.

Yang, W., R. Wang, Y. Chen, and J. Wu, 2014, Random noise attenuation using
a new spectral decomposition method: SEG expanded abstracts: 84th Annual
international meeting, 4366–4370.

Zeng, Q., Y. Guo, R. Jiang, J. Ba, H. Ma, and J. Liu, 2017, Fluid sensitivity of
rock physics parameters in reservoirs: Quantitative analysis: Journal of Seismic
Exploration, 26, 125–140.

Zhang, D., Y. Chen, and S. Gan, 2016a, Iterative reconstruction of 3D seismic data
via multiple constraints: 78th Annual International Conference and Exhibition,
EAGE, Extended Abstracts, DOI: 10.3997/2214–4609.201601241.

——–, 2016b, Multidimensional seismic data reconstruction with multiple constraints:
86th Annual International Meeting, SEG, Expanded Abstracts, 4801–4806.

Zhang, D., Y. Chen, W. Huang, and S. Gan, 2016c, Multi-step reconstruction of 3D
seismic data via an improved MSSA algorithm: CPS/SEG Beijing 2016 Interna-
tional Geophysical Conference & Exposition, SEG, Expanded Abstracts, 745–749.

Zhang, P., Y. Dai, R. Wang, and Y. Tan, 2017, A quantitative evaluation method
based on emd for determining the accuracy of time-varying seismic wavelet extrac-
tion: Journal of Seismic Exploration, 26, 267–292.

Zhou, Y., and W. Han, 2018, Multiples attenuation in the presence of blending noise:
Journal of Seismic Exploration, 27, no. 1, 69–88.

Zhou, Y., S. Li, D. Zhang, and Y. Chen, 2018, Seismic noise attenuation using an
online subspace tracking algorithm: Geophysical Journal International, 212, no. 2,
1072–1097.

Zu, S., H. Zhou, Y. Chen, , S. Qu, X. Zou, H. Chen, and R. Liu, 2016a, A peri-
odically varying code for improving deblending of simultaneous sources in marine
acquisition: Geophysics, 81, V213–V225.

Zu, S., H. Zhou, Y. Chen, X. Pan, S. Gan, D. Zhang, and C. Xie, 2016b, Recovering
the most from big gaps using least-squares inversion: 86th Annual International
Meeting, SEG, Expanded Abstracts, 4128–4133.

Zu, S., H. Zhou, W. Mao, D. Zhang, C. Li, X. Pan, and Y. Chen, 2017, Iterative
deblending of simultaneous-source data using a coherency-pass shaping operator:
Geophysical Journal International, 211, no. 1, 541–557.


