
CuQ-RTM: A CUDA-based code package for

stable and efficient Q-compensated reverse time

migrationa

aPublished in Geophysics, 84(1), F1-F15, (2019)

Yufeng Wang∗, Hui Zhou∗, Xuebin Zhao∗, Qingchen Zhang†, Poru Zhao‡, Xiance
Yu‡, and Yangkang Chen§

ABSTRACT

Reverse time migration (RTM) in attenuating media should take the absorption
and dispersion effects into consideration. The latest proposed viscoacoustic wave
equation with decoupled fractional Laplacians (DFLs) facilitates separate am-
plitude compensation and phase correction in Q-compensated RTM (Q-RTM).
However, intensive computation and enormous storage requirements of Q-RTM
prevent it from being extended into practical application, especially for large-scale
2D or 3D case. The emerging graphics processing unit (GPU) computing tech-
nology, built around a scalable array of multithreaded Streaming Multiprocessors
(SMs), presents an opportunity for greatly accelerating Q-RTM by appropri-
ately exploiting GPU’s architectural characteristics. We present the cuQ-RTM,
a CUDA-based code package that implements Q-RTM based on a set of stable
and efficient strategies, such as streamed CUFFT, checkpointing-assisted time-
reversal reconstruction (CATRC) and adaptive stabilization. The cuQ-RTM can
run in a multi-level parallelism (MLP) fashion, either synchronously or asyn-
chronously, to take advantages of all the CPUs and GPUs available, while main-
taining impressively good stability and flexibility. We mainly outline the archi-
tecture of the cuQ-RTM code package and some program optimization schemes.
The speedup ratio on a single GeForce GTX760 GPU card relative to a single
core of Intel Core i5-4460 CPU can reach above 80 in large-scale simulation. The
strong scaling property of multi-GPU parallelism is demonstrated by perform-
ing Q-RTM on a Marmousi model with one to six GPU(s) involved. Finally,
we further verify the feasibility and efficiency of the cuQ-RTM on a field data
set. The “living” package is available from GitHub at https://github.com/

Geophysics-OpenSource/cuQRTM, and peer-reviewed code related to this article
can be found at http://software.seg.org/2019/0001.

INTRODUCTION

Seismic wave absorption and dispersion, resulting from the presence of intrinsic anelas-
ticity in subsurface media, has been considered one of the most important factors de-

https://github.com/Geophysics-OpenSource/cuQRTM
https://github.com/Geophysics-OpenSource/cuQRTM
http://software.seg.org/2019/0001

Wang et al, 2019 2 CUDA-based Q-RTM

grading the quality of seismogram and decreasing the resolution of migrated images,
which affects the reliability of seismic interpretation (Wang and Guo, 2004; Car-
cione, 2007; Wang et al., 2018b). Many models have been proposed to characterize
this frequency-dependent attenuation, which can be roughly classified into two cate-
gories: mechanical models and mathematical models. The former includes standard
spring-pot models such as the Maxwell body, Kelvin-Voigt model, standard linear
solid (SLS) model (Carcione, 2007; Mainardi, 2010), their generalizations such as the
generalized Maxwell body (GMB) and generalized Zener body (GZB) (Moczo and
Kristek, 2005; Cao and Yin, 2014), and their fractional extensions such as the frac-
tional Kelvin model (FKM), fractional Zener model (FZM) (Rossikhin and Shitikova,
2010; Näsholm and Holm, 2013). Generally, the attenuation of seismic waves appears
to be adequately modeled by a power law (Strick, 1967; Szabo, 1994, 1995) or linear
dependence on frequency over a finite bandwidth (a special case of power-law attenu-
ation with a power of 1) (McDonal et al., 1958; Futterman, 1962; Kjartansson, 1979).
Therefore, another category of models is established on the assumption of power-law
attenuation, which includes the Kolsky-Futterman model (Kolsky, 1956; Futterman,
1962), the power-law model and Kjartansson’s constant-Q model (Kjartansson, 1979).

The attenuation models mentioned above are designed for mathematically char-
acterizing frequency-dependent attenuation effects of subsurface media and further
paving the way to mitigate these effects during seismic wave propagation. Early at-
tempts to compensate for the Q effect (attenuation and dispersion effects) are mostly
conducted in the framework of one-way wave-equation migration (OWWEM) (Dai
and West, 1994; Mittet et al., 1995; Wang and Guo, 2004; Mittet, 2007; Zhang et al.,
2012). In recent years, Q-RTM has received increasing attention from the geophysical
community (Causse and Ursin, 2000; Zhang et al., 2010; Zhu et al., 2014; Li et al.,
2016; Sun et al., 2016; Guo et al., 2016; Wang et al., 2018c), which generalizes acous-
tic RTM by considering viscoacoustic propagation and compensating amplitude loss
and phase distortion during source and receiver wavefields extrapolation. Zhu and
Harris (2014) proposed a novel viscoacoustic wave equation with decoupled fractional
Laplacians (DFLs) which separately dominate amplitude attenuation and phase dis-
persion, and they further applied this viscoacoustic wave equation in RTM so as to
improve the resolution and quality of the image (Zhu et al., 2014). This decoupled
viscoacoustic wave equation is attractive for Q-RTM due to its flexibility for separate
amplitude compensation and phase correction, which can be achieved by simply re-
versing the absorption proportionality coefficient in sign while leaving the equivalent
dispersion parameter unchanged (Treeby et al., 2010; Zhu et al., 2014).

Although the basic paradigm of Q-RTM has been well-established in recent years,
there are still some problems and limitations in the process of the implementation,
i.e., intensive computation, huge storage requirements and frequent disk I/O, and the
difficult issue of stability. The emerging graphics processing unit (GPU) computing
technology, built around a scalable array of multithreaded Streaming Multiprocessors
(SMs), presents an opportunity for accelerating Q-RTM much further by appropri-
ately exploiting the GPU’s architectural characteristics (Tan et al., 2016; Farquhar
et al., 2016). As a booming technology, the GPU computing technology has been

Wang et al, 2019 3 CUDA-based Q-RTM

widely applied into seismic modeling (Micikevicius, 2009; Zhang and Gao, 2014),
imaging (Zhang et al., 2009; Foltinek et al., 2009; Liu et al., 2012, 2013; Yang et al.,
2014), and inversion (Shin et al., 2014; Yang et al., 2015). In this chapter, we present
a CUDA-based code package named cuQ-RTM, which aims to tackle these problems
so as to achieve an efficient, storage-saving and stable Q-RTM. Next, we will briefly
introduce how cuQ-RTM is designed to deal with these challenges and then outline
the architecture of the cuQ-RTM code package.

Specifically, in order to avoid intensive computation, we implement Q-RTM in a
multi-level parallel (MLP) fashion, either synchronously or asynchronously, to take
advantage of all the CPUs and GPUs available. In the framework of cuQ-RTM, the
basic forward and backward modeling modules, based on viscoacoustic wave equations
with DFLs, are efficiently simulated using the Fourier pseudospectral method (PSM)
(Carcione, 2010; Zhu and Harris, 2014; Chen et al., 2016). Discrete Fourier transforms
(DFTs) of complex wavefields are the most time-consuming parts of these modules.
Fortunately, DFTs can be efficiently computed by calling the CUFFT library API
(Guide, 2013), which provides a simple interface for computing parallel FFTs on the
GPU, and a simple configuration mechanism called a plan that completely specifies
the optimal plan of execution. The use of a CUFFT standard library brings two
obvious benefits: the configuration mechanism allows us to create the plans once
and execute the plans multiple times (at every time step of the iteration) without
recalculation of the configuration. Every CUFFT plan can be associated with a
specified CUDA stream. Streaming the CUFFT execution allows for potential overlap
between transforms and memory copies and provides a balanced calculation load on
each card of the GPUs. CUFFT library functions can only be executed on the device
and called from the host, so we have to split my customized kernel functions into
k-space components and x-space components. From the brief codes in Appendix A,
one can clearly figure out how these components are interconnected.

Apart from the issue of intensive computation, extensive data storage and bur-
densome disk I/O are another two bottlenecks for conventional RTM, especially for
CUDA-based RTM which demands frequent memory copying between host and de-
vice (Liu et al., 2013; Yang et al., 2014). In the past three decades, several wavefield
reconstruction strategies have been developed to reach a reasonable compromise be-
tween the computer memory requirement and computational complexity, for example,
reverse propagation coupled with effective boundary saving (Yang et al., 2014), the
optimal checkpointing scheme (Griewank and Walther, 2000; Symes, 2007), and their
combinations such as the time-reversal checkpointing method (Anderson et al., 2012)
and the checkpointing-assisted reverse-forward simulation (CARFS) method (Yang
et al., 2016). Yang et al. (2016) proposed a novel viscoacoustic wavefield reconstruc-
tion algorithm referred as CARFS, which is implemented by monitoring the energy
errors of the reconstruction, and taking it as a criterion to decide whether forward
simulation or reverse simulation will be performed at the next time step. Wang et al.
(2017b) proposed a robust viscoacoustic wavefield reconstruction scheme using time-
reversal checkpointing (TRC) and k-space filtering (KSF). In this hybrid scheme,
TRC serves as a time-domain regularization to eliminate accumulating errors by re-

Wang et al, 2019 4 CUDA-based Q-RTM

placing the reconstructed wavefield with the stored wavefield at checkpoints, whereas
KSF further suppresses high-wavenumber artifacts introduced during time-reversal
reconstruction. In the cuQ-RTM package, we adopt the checkpointing-assisted time-
reversal reconstruction (CATRC) scheme to reconstruct source wavefields, which com-
bines the efficiency of reverse propagation and the stability of checkpointing. Unlike
CARFS, the proposed CATRC scheme keeps the reconstruction errors within an
acceptable range by imposing low-pass filtering on the time-reversal reconstructed
wavefield so as to maintain a fixed recomputation ratio of two.

Finally, amplitude compensation in Q-RTM suffers from numerical instability be-
cause of it boosts high-frequency noise arising from high-frequency noise in seismic
data and numerical errors from the finite machine precision (Wang, 2009; Zhu et al.,
2014; Yang et al., 2016; Zhao et al., 2017). Therefore stabilization needs to be in-
troduced either in the frequency or wavenumber domain (Kalimeris and Scherzer,
2012; Ammari et al., 2013). Since the forward and backward modeling modules are
simulated by PSM in cuQ-RTM, it is more natural to conduct stabilization in the
wavenumber domain. In some literature concerning Q compensation, high-frequency
noises are suppressed by utilizing a low-pass Tukey filter with its cutoff frequency
identified by the noise level of measured data (Treeby et al., 2010; Zhu et al., 2014;
Li et al., 2016). However, conventional time-invariant filtering fails to adapt with Q
distribution and compensation depth (travel time). Wang et al. (2018c) developed an
adaptive stabilization for Q-RTM by analytically deriving k-space Green’s functions
for the constant-Q wave equation with DFLs and its compensated equation, where the
stabilization factor can be explicitly identified by the specified gain limit according
to an empirical formula. In the provided package, we utilize the proposed adaptive
stabilization method to deal with numerical instability in Q-RTM, which exhibits
superior properties of time-variance and Q-dependence over conventional low-pass
filtering.

In this paper, we present an open-source code package cuQ-RTM, which over-
comes several problems commonly existing in conventional Q-RTM such as intensive
computation, data storage and numerical stability, by adopting stable and efficient
strategies like streamed CUFFT, CATRC and adaptive stabilization. The general
architecture of the cuQ-RTM code package consists of memory manipulation, mod-
ules, kernels, and multi-level parallelism. Each component plays an indispensable
role in GPU-CPU cooperative computing. We further demonstrate the validity and
efficiency of cuQ-RTM with both synthetic and field examples.

OVERVIEW OF Q-RTM

In this section, we first review the general principle of Q-RTM in the framework
of viscoacoustic wave equation with DFLs, which includes viscoacoustic propagation,
compensation, and imaging. Besides that, two stable and efficient strategies, CATRC
and adaptive stabilization, are also provided to improve the computation and stability
performance of Q-RTM.

Wang et al, 2019 5 CUDA-based Q-RTM

Propagation, compensation, and imaging

The viscoacoustic wave equation with DFLs was first proposed by Zhu and Harris
(2014) to characterize frequency-dependent attenuation and dispersion separately,
which can be written as

1

c2

∂2p

∂t2
(x, t)− η(−∇2)γ+1p(x, t)− τ ∂

∂t
(−∇2)γ+ 1

2p(x, t) = δ(xs)f(t),

p(x, t) =
∂p

∂t
(x, t) = 0, x ∈ Ω, t < 0,

(1)

where Ω is a bounded domain in d-dimensional space Rd, xs denotes the source
position, and f(t) is the point source signature enforced at xs. The dimensionless
parameter γ = arctan(1/πQ) ranges within [0, 1/2), and c2 = c2

0cos2(πγ/2), where
c0 is the velocity model defined at the reference frequency ω0. The proportionality
coefficients of two fractional Laplacians, separately representing dispersion and ab-
sorption, are given by η = −c2γ

0 ω
−2γ
0 cos(πγ) and τ = −c2γ−1

0 ω−2γ
0 sin(πγ). Equation 1

seems to be attractive for Q-RTM owing to its flexibility for separately compensating
amplitude loss and correcting phase distortion. Treeby et al. (2010) and Zhu et al.
(2014) stated that attenuation compensation based on this equation can be achieved
by reversing the absorption proportionality coefficient in sign but leaving the equiv-
alent dispersion parameter unchanged. My latest work (in Chapters 4 and 5) has
analytically proved that Green’s function of equation 1 is exponentially decreasing,
whereas reversing the absorption proportionality coefficient in sign signifies replacing
the Green’s function with a phase-conjugated Green’s function that is exponentially
increasing (Wang et al., 2018c, 2017c).

The novel paradigm of Q-RTM first proposed by Zhu et al. (2014), where the
source wavefield ps(x, t) and receiver wavefield pr(x, t) are compensated during for-
ward extrapolation and time-reversal extrapolation simultaneously, coupled with a
zero-lag crosscorrelation imaging condition, has proven to be a promising approach
for generating high-resolution images and high-fidelity amplitude reflectors. Follow-
ing the spirit of Treeby et al. (2010) and Zhu et al. (2014), the Q-compensated source
wavefield ps(x, t) is the solution of the following equation:

1

c2

∂2ps
∂t2

(x, t)− η(−∇2)γ+1ps(x, t) + τ
∂

∂t
(−∇2)γ+ 1

2ps(x, t) = δ(xs)f(t),

ps(x, t) =
∂ps
∂t

(x, t) = 0, x ∈ Ω, t < 0,
(2)

and the Q-compensated receiver wavefield pr(x, t) satisfies the following equation 1

c2

∂2pr
∂t2

(x, t)− η(−∇2)γ+1pr(x, t) + τ
∂

∂t
(−∇2)γ+ 1

2pr(x, t) = δ(xr)g(x, T − t),
g(x, t) = p(x, t), x ∈ xr, t ∈ [0, T],

(3)
where xr denotes the receiver positions, g(x, t) stands for the recorded seismic data
at xr, which are reversed in time and enforced as the Dirichlet boundary condition.

Wang et al, 2019 6 CUDA-based Q-RTM

Finally, we realize Q-RTM via the following zero-lag crosscorrelation imaging condi-
tion:

I(x) =

∫ T

0

ps(x, t)pr(x, t)dt. (4)

However, an inevitable issue imposed by the crosscorrelation algorithm is that the
forward wavefields need to be accessible at every time step (Anderson et al., 2012;
Yang et al., 2016). Saving all forward wavefields requires tremendous memory and
frequent disk I/O, which makes it impractical for large-scale 2D or 3D RTM (Symes,
2007; Tan and Huang, 2014), especially for CUDA-based RTM that demands data
transfer between host and device (Yang et al., 2014).

CATRC

In order to relieve extensive data storage and burdensome disk I/O and thus reach
a reasonable compromise between the computer memory requirement and computa-
tional complexity, we propose an efficient wavefield reconstruction strategy named
CATRC, which combines the efficiency of reverse propagation and the stability of
checkpointing. Therefore source wavefields used in imaging condition in equation 4
can be well-reconstructed during time-reversal simulation. Here we denote the recon-
structed wavefields as q(x, t), which is the solution of

1

c2

∂2q

∂t2
(x, t)− η(−∇2)γ+1q(x, t)− τ ∂

∂t
(−∇2)γ+ 1

2 q(x, t) = δ(x∂Ω)h(x, T − t),
h(x, t) = ps(x, t), x ∈ ∂Ω, t ∈ [0, T],
q(x, t) = ps(x, t), t ∈

{
Ci | i ∈ [0, Nc − 1]

}⋃{
T, T −∆t

}
,

(5)
where ∂Ω is the boundary of space Ω, h(x, t) are forward wavefields distributed on
∂Ω, which are reversed in time and enforced as the Dirichlet boundary condition
for source wavefield reconstruction. Ci denotes a checkpoint, and Nc is the number
of checkpoints. According to equation 5, the implementation of CATRC can be
briefly summarized as two processes. Firstly, we compute forward wavefield ps(x, t)
by solving the compensated viscoacoustic wave equation in 2, and we save the forward
wavefield at the outermost layer boundary of the simulation domain at every time
step. At the same time, we also save the complete forward wavefield ps(x, t) at the
predefined checkpoints (t ∈ Ci, i = 0, · · · , Nc − 1) and the last two time steps. The
checkpoints can be equally distributed or logarithmically distributed (Griewank and
Walther, 2000; Symes, 2007). Next, we compute the backward wavefield q(x, t) in
reverse time (from t = T to t = 0) by solving the reconstructed viscoacoustic wave
equation (equation 5), and replacing the calculated backward wavefield q(x, t) with
the recorded forward wavefield ps(x, t) at checkpoints (t ∈ Ci, i = Nc − 1, · · · , 0).

It is remarkable that reconstruction by equation 5 is a mathematically stable pro-
cess, given that the source wavefield is compensated while the reconstructed wavefield
from boundary is attenuated. However, this stable reconstruction still suffers from
insufficient accuracy due to the fact that we utilize PSM to solve equation 5 with

Wang et al, 2019 7 CUDA-based Q-RTM

only the recorded forward wavefield at the outermost layer boundary of simulation
domain at every time step. This mismatch of simulation accuracy inevitably degrades
the performance of the wavefield reconstruction. Fortunately, the time-reversal check-
pointing scheme acts as a time-domain regularization that eliminates accumulating
errors by replacing the reconstructed wavefield with the stored wavefield at check-
points (Wang et al., 2017b).

Adaptive stabilization

Mathematically speaking, the compensated viscoacoustic wave equations 2 and 3 are
severely ill-posed due to the presence of the compensating term +τ∂t(−∇2)γ+1/2p(x, t).
That is to say, amplitude compensation is a nonstationary process with energy expo-
nentially amplified over travel time, which boosts high-frequency ambient noise and
can even result in numerical instability. In the package, we apply an adaptive stabi-
lization scheme for Q-RTM to suppress unwanted high-frequency artifacts, which is
discussed in my previous work (Wang et al., 2018c). Here we briefly summarize the
process.

I derive a k-space Green’s function of equation 1 by enforcing a point source at
time t = t0 and x = xs. The time-space harmonic Green’s function G(k, ω) is the
solution of the following Helmholtz equation(

ω2

c2
+ η|k|2γ+2 + iωτ |k|2γ+1

)
G(k, ω) =

1

(2π)d+1
e−iωt0eikxs . (6)

Solving for Green’s function G(k, ω), applying d + 1 dimensional inverse Fourier
transformation, and then integrating the kernel function with respect to ω based
on Cauchy’s residue theorem, we have the following time-domain attenuated Green’s
function

Gatt(x, t) =
c2

(2π)d

∫
Cd

sin(ξ1t)e
−ξ2t

ξ1

dk. (7)

The compensated Green’s function can be obtained by reversing the absorption-
related term τ in sign but leaving the other term η unchanged:

Gcomp(x, t) =
c2

(2π)d

∫
Cd

sin(ξ1t)e
ξ2t

ξ1

dk, (8)

where Gatt and Gcomp represent attenuated and compensated Green’s functions, re-
spectively. These two Green’s functions lay the foundation for designing an adaptive
stabilization operator. Inspired by stabilization in inverse Q filtering (Wang, 2002;
Irving and Knight, 2003; Wang, 2006), we proposed a similar adaptive stabilization
for Q-RTM, which can be defined as

Λ(k, t) =
β(k, t)

β2(k, t) + σ2
=

eξ2t

1 + σ2e2ξ2t
, (9)

Wang et al, 2019 8 CUDA-based Q-RTM

where the amplitude-attenuated operator β(k, t) = e−ξ2t. The final form of the pro-
posed stabilization operator can be given by

s(k, l∆t) =

{
1

1+σ2e2ξ2(k)∆t , l = 1,
1+σ2e2ξ2(l−1)∆t

1+σ2e2ξ2l∆t
, l = 2, 3, . . . , n.

(10)

ARCHITECTURE OF THE CUQ-RTM CODE PACKAGE

In this section, we outline the architecture of cuQ-RTM code package and some pro-
gram optimization schemes. From an overall perspective, this package can be roughly
separated into four components: memory manipulation, modules, kernels, and multi-
level parallelism. As shown in Figure 1, each component plays an indispensable role
in GPU-CPU cooperative computing. The following is a brief description of each
component and how it interacts with the others.

Memory manipulation

The CUDA programming model assumes that both the host and the device maintain
their own separate memory spaces in DRAM, referred to as host memory and device
memory, respectively. Before we introduce the details about the architecture of the
cuQ-RTM code package, we need to clarify the variable definition and figure out
which variables need to be transferred between host memory and device memory.
Table 1 presents some important variables allocated on host and device, which fall
into three memory types: pageable host memory, page-locked host memory, and global
device memory. The philosophy of choosing host variable types is that variables to be
frequently copied between host and device, such as seismogram rms and image cor,
are allocated in page-locked host memory, whereas the rest of the host variables are
allocated as regular pageable host memory. Because copies between page-locked host
memory and device memory can be performed concurrently with kernel execution,
data transfer can be overlapped during kernel execution leading to a more efficient
streaming execution on cluster nodes with multiple GPUs.

struct MultiGPU contains page-locked host variables and global device variables
(with d as a prefix) on every stream. From this struct variable, we can estimate
the total device memory usage before execution and ensure that the memory us-
age will not exceed the memory limit. CUDA threads (kernel functions) execute on
a physically separate device (GPUs), whereas the rest of the C program executes
on the host (CPUs). Therefore, a program manages the global memory accessible
to kernels through calls to the CUDA runtime such as device memory allocation
cuda Device malloc(. . .), deallocation cuda Device free(. . .), and initialization
cuda Host initialization(. . .) as well as data transfer between host and device
memory.

Wang et al, 2019 9 CUDA-based Q-RTM

Figure 1: The architecture of the cuQ-RTM code package.

Table 1: Some important variables allocated on host and device.

Memory type Allocation & Free Variables

Host
pageable

malloc()

free()

ricker, vp, Qp, Gamma, t cp
kfilter, kstabilization

Final image cor, Final image cor

page-locked
cudaMallocHost()

cudaFreeHost()

u0, u1, u2
seismogram obs, seismogram rms

image cor, image nor

Device global
cudaMalloc()

cudaFree()

d ricker, d vp, d Gamma, d t cp, d u cp
d u0, d u1,d u2, d seimogram rms

d image cor, d image nor
d uk, d Lap uk, d amp uk, d pha uk

d borders up, d u2 final0, d u2 final1

Wang et al, 2019 10 CUDA-based Q-RTM

Kernel

Kernels, the most basic unit of cuQ-RTM to accomplish a series of specific tasks such
as variable initialization and applying an absorbing boundary condition (ABC), can
further be integrated into a fully functional module. Different variables are initialized
with distinct kernels cuda kernel initialization(. . .), cuda kernel initialization images(. . .),
and cuda kernel initialization Finals(. . .) based on their scope in modules.
Wavefield variables are updated by cuda kernel update(. . .).

In the framework of cuQ-RTM, the basic forward and backward modules based
on viscoacoustic wave equation with DFLs are efficiently simulated by PSM cou-
pled with the CUFFT library. However, CUFFT library functions can only be ex-
ecuted on the device and called from the host, so we split the customized kernel
functions into a k-space component and x-space component. The Fourier transform
function cufftExecC2C(. . ., CUFFT FORWARD) and inverse Fourier transform func-
tion cufftExecC2C(. . ., CUFFT INVERSE) serve as the link between the x-space op-
erator cuda kernel visco PSM 2d forward x space(. . .) and the k-space operator
cuda kernel visco PSM 2d forward k space(. . .). Absorbing boundary conditions
for these modeling operators are conducted by the multiple transmitting formula
(MTF) cuda kernel MTF 2nd(. . .) (Liao et al., 1984).

In the cuQ-RTM package, we adopt the CATRC scheme to reconstruct source
wavefields, which combines the efficiency of reverse propagation and the stability of
checkpointing. Kernel functions cuda kernel checkpoints Out(. . .) and cuda kernel checkpoints In(. . .)
are designed to record and fetch forward wavefields at predefined checkpoints. Fur-
thermore, wavefields on the outermost layer boundary of simulation domain at each
time step are also recorded in global device variables d borders up, d borders bottom, d borders left,
and d borders right. The total memory storage for 2D reconstruction can be esti-
mated as

Storage2D [GB] ≈ 2(nx+ nz)nt+ (Nc + 2)(nx× nz)

10243/4
, (11)

and for the 3D case,

Storage3D [GB] ≈ 2(nx× ny + nx× nz + ny × nz)nt+ (Nc + 2)(nx× ny × nz)

10243/4
,

(12)
where nx, ny, nz and nt are spatial and temporal grid sizes. Figure 2a shows memory
storage against the scale of the model (where we denote size of the simulation as
nx = ny = nz = 0.1nt = 10Nc) for 2D and 3D cases. Figure 2b presents the
memory ratio between boundary savings and checkpointing savings for 2D and 3D
cases. Such a large amount of memory storage is unacceptable for the 3D case, so
we have to output the boundary savings to the disk and then read the borders by
memory copying between host and device memory.

I develop an adaptive stabilization method to deal with numerical instability in Q-
RTM, which exhibits superior properties of time-variance and Q-dependence over con-
ventional low-pass filtering. Both the adaptive stabilization scheme cuda kernel AdaSta(. . .)

Wang et al, 2019 11 CUDA-based Q-RTM

(a)

(b)

Figure 2: (a) Memory storage and (b) memory ratio of boundary wavefield to check-
pointing wavefield (B/C) for both 2D and 3D cases.

Wang et al, 2019 12 CUDA-based Q-RTM

and low-pass filtering scheme cuda kernel filter2d(. . .) are provided in this pack-
age. Users can choose either of these two stabilizing methods to suppress high-
frequency noises as they like.

Module

Much as the kernel layer insulates the user from the programming details of a se-
ries of specific tasks, the module layer insulates the user from the implementation
details of the module of Q-RTM, which contains forward extrapolation, wavefield
reconstruction, backward extrapolation and imaging. Each of them is made up of
several kernel functions and streams. A stream is defined by creating a stream ob-
ject using cudaStreamCreate(. . .) and specifying it as the stream parameter to a
sequence of kernel launches and host-device memory copies. Streams are released
by calling cudaStreamDestroy(. . .), which waits for all preceding commands in the
given stream to complete before destroying the stream and returning control to the
host thread. THe forward module cuda visco PSM 2d forward(. . .) in cuQ-RTM
is designed in a splitting fashion and called by the main function to conduct for-
ward wavefield extrapolation. As wavefield reconstruction, backward extrapolation
and imaging are conducted during time-reversal simulation, these three modules can
be merged into one module cuda visco PSM 2d backward(. . .). Both forward and
backward modules are presented by brief codes in Appendix A.

Multi-level parallelism

The code package described above is implemented for multiple NVIDIA GPUs using
MPI, C, and CUDA in an MLP fashion. The execution is divided into two compo-
nents. The first is responsible for the coarse-grained parallelization between nodes of
the clusters, which is parallelized using MPI. The second performs calculations within
each GPU using CUDA. One of the most important issues arising when working with
a hybrid MPI/CUDA code is the proper mapping of MPI processes and threads to
GPUs and nodes. Thus, we can evenly distribute all shots among every node and
every GPU, while being aware of the precise index of each shot during simulation.
In the package, we provide two distributing schemes to allow the framework to run
on both uniform clusters (i.e., each node with the same number of integrated GPUs)
and non-uniform clusters (i.e., a mixture of nodes with the different number and the
types of integrated GPUs). Every MPI process (rank) MPI Comm rank(comm,&myid)

inspects the configuration of the node being executed on, and all GPUs of each node
are launched by streaming execution. Algorithms 1 and 2 provide shot distribut-
ing schemes to ensure load balancing on each node and device. All threads on host
are synchronized by MPI Barrier(comm) before migrated images from all shots are
reduced by MPI Allreduce(. . .), which further guarantees less thread blocking time.
Algorithm 1: Shot distribution for uniform clusters()

1 Input: The number of shots ns, nodes np, GPUs per node ng.

Wang et al, 2019 13 CUDA-based Q-RTM

2 Output: Index of each shot is.
3 nsid = ns/(np× ng)
4 modsr = ns%(np× ng)
5 prcs = modsr/ng
6 if myid < prcs
7 then eachsid = nsid+ 1;
8 offset = myid× (nsid+ 1)× ng;
9

10 else eachsid = nsid;
11 offset = prcs× (nsid+ 1)× ng + (myid− prcs)× nsid× ng;
12 for iss← 0 · · · eachsid− 1
13 do
14 offsets = offset + iss× ng;
15 for i← 0 · · ·ng − 1
16 do
17 is = offsets + i;

Algorithm 2: Shot distribution for non-uniform clusters()
1 Input: The number of shots ns, nodes np, GPUs per node ng(id).
2 Output: Index of each shot is.
3 nsid = ns/

∑np−1
id=0 ng

(id)

4 modsr = ns%
∑np−1

id=0 ng
(id)

5 for j ← 1 · · ·np− 1
6 do
7 prcs = modsr/

∑np−1−j
id=0 ng(id);

8 if prcs > 0
9 then break;

10 if myid < np− j
11 then eachsid = nsid+ prcs;
12 offset = (nsid+ prcs)×

∑myid
id=0 ng

(id);
13
14 else eachsid = nsid;
15 offset == (nsid+ prcs)×

∑np−1−j
id=0 ng(id) + nsid×

∑myid
id=np−j ng

(id);
16 for iss← 0 · · · eachsid− 1
17 do
18 offsets = offset + iss× ng(myid);
19 for i← 0 · · ·ng(myid) − 1
20 do
21 is = offsets + i;

Wang et al, 2019 14 CUDA-based Q-RTM

EXAMPLES

In this section, we use both synthetic and field examples to demonstrate the superior
performance of the presented cuQ-RTM package over traditional CPU-based com-
putational models in terms of efficiency, memory storage and stability. All of the
following examples are reproducible when the C, CUDA, Matlab and Madagascar
platforms (Fomel et al., 2013) are available.

Viscoacoustic modeling on a layered model

In the first synthetic example, we perform viscoacoustic modeling on a multi-scale
layered model with a single GeForce GTX760 GPU and a single core of Intel Core
i5-4460 CPU for speedup comparison. As is shown in Figure 3, the scale of these
layered models varies from 128 × 128 to 2048 × 2048 grids. We record the mean
runtime per time step of viscoacoustic modeling using a single CPU core and a single
GPU at each model scale, and their corresponding speedup ratio, which are presented
in Table 2. CPU-based simulation is compiled by GNU C++ compiler (g++ 4.8.4)
with FFTW 3.3.2. GPU-based simulation is compiled by CUDA C with the CUFFT
library API. Figure 4 shows the mean runtime per time step and the corresponding
speedup ratio against model scale. It indicates that the presented cuQ-RTM package
running on a single GPU card can nearly be 50-80 times faster than the conventional
CPU implementation with a single CPU core. Furthermore, simulation on a larger
model scale tends to achieve a greater speedup ratio.

Figure 3: Velocity models for multi-scale layered model.

Wang et al, 2019 15 CUDA-based Q-RTM

Table 2: The mean runtime per time step of viscoacoustic modeling using a single
GTX760 GPU relative to a four-core Intel Core i5-4460 CPU and the corresponding
speedup ratio against model scale.

Model Scale (grids) 128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048
CPU Runtime (ms) 9.7170 43.5925 101.3938 359.0682 1855.8382
GPU Runtime (ms) 0.1839 0.8195 1.8262 6.3267 22.3263

Speedup Ratio 52.8385 53.1940 55.5217 56.7544 83.1234

Figure 4: The mean runtime per time step of viscoacoustic modeling using a single
GTX760 GPU relative to a four-core Intel Core i5-4460 CPU and the corresponding
speedup ratio against model scale.

Wang et al, 2019 16 CUDA-based Q-RTM

Q-RTM on Marmousi model

The second synthetic example presented here is CUDA-based Q-RTM for the Mar-
mousi model. Figures 5a and 5b show its velocity and Q models, which contains a
high-attenuation zone with a low Q value. The model has 234 nodes with a sampling
interval of dz = 10 m in depth and 663 nodes with a sampling interval of dx = 10
m in the horizontal direction. In the observation system, 60 sources are distributed
laterally with a shot interval ds = 100 m, and each shot has 301 double-sided re-
ceivers with a maximum offset of 1500 m. The point source is a Ricker wavelet with
a dominant frequency fd = 20 Hz. The synthetic seismic data are modeled by the
PSM with time interval dt = 0.001 s, and the records last 2 s.

Figure 6 shows the migrated image using conventional RTM from acoustic data
(Figure 6a) and viscoacoustic data without compensation (Figure 6b), and Q-RTM
from viscoacoustic data (Figures 6c and 6d), respectively. The acoustic imaging result
shown in Figure 6a serves as a reference for comparison. Due to the presence of a
high-attenuation zone, the imaging result of the structure beneath high-attenuation
zone shown in the blue frame in Figure 6b exhibits attenuated amplitudes and blurred
structures. The attenuation also severely affects the migrated image of the anticlinal
structure, shown in the green frame in Figure 6b below the unconformity. Figures
6c and 6d show compensated images from Q-RTM using conventional low-pass fil-
tering and the proposed adaptive stabilization scheme. The compensated images
exhibit a clear anticlinal structure and recovered amplitudes compared with the non-
compensated image. For another comparison, Figure 7 shows migrated seismic traces,
which are selected arbitrarily at three distances of 1500 m, 3600 m and 5200 m from
the imaging results shown in Figure 6. From these traces, one find that the com-
pensated traces match well with the reference traces. It indicates that the developed
cuQ-RTM package is capable of improving imaging quality.

The strong scaling plot shows how the execution time decreases with an increasing
number of computing resources. During large-scale imaging, the proportion of com-
putational time spent to simulate wave propagation mandates that the solver must
be efficient and scale well. In this regard, 60 shots of Q-RTM are evenly distributed
among every GPU card with the number of GPUs (Tesla K10) varying from one to
six. We record scheduling runtime and computational runtime during every test and
present them in Table 3. Figure 8 shows the results of a strong scaling test of cuQ-
RTM on the Marmousi model. It demonstrates that very close to ideal efficiency can
be achieved with a balanced load on each GPU. Thus, the code package exhibits ex-
cellent scalability and can be run with almost ideal code performance, in part because
communications are almost entirely overlapped with calculations.

Q-RTM on field data

The field data example shown in Figures 9-11 aims to further verify the feasibility
and applicability of the proposed package. Velocity and Q models are presented in

Wang et al, 2019 17 CUDA-based Q-RTM

(a)

(b)

Figure 5: (a) Velocity and (b) Q of the Marmousi model.

Table 3: runtime of cuQ-RTM using multiple Tesla K10 GPUs and the corresponding
speedup ratio against the number of GPUs. The model has 234 nodes with in depth
and 663 nodes in the horizontal direction.

The number of GPUs 1 2 3 4 5 6
Manipulational Runtime (s) 7.62 10.07 10.52 11.02 11.41 11.92
Computational Runtime (s) 2639.29 1329.40 889.82 672.78 539.21 449.97

Total Runtime (s) 2646.91 1339.50 900.34 683.80 550.62 461.89
Speedup Ratio 1.0000 1.9761 2.9399 3.8709 4.8071 5.7306

Wang et al, 2019 18 CUDA-based Q-RTM

(a) (b)

(c) (d)

Figure 6: Migrated images of the Marmousi model using (a) conventional RTM from
acoustic data, (b) conventional RTM from viscoacoustic media without compensa-
tion, (c) Q-RTM using low-pass filtering and (d) Q-RTM using adaptive stabilization
scheme.

(a) (b)

(c)

Figure 7: Migrated seismic traces selected at three distances of (a) 1500 m, (b) 3600
m and (c) 5200 m from migration results shown in Figure 6.

Wang et al, 2019 19 CUDA-based Q-RTM

Figure 8: Strong scaling for cuQ-RTM on the Marmousi model using multiple Tesla
K10 GPUs. Speedup ratios are plotted against the number of GPUs. The model has
234 nodes with in depth and 663 nodes in the horizontal direction.

Figure 9, which were obtained by migration velocity analysis (Sava and Vlad, 2008)
and Q tomography (Shen and Zhu, 2015). The size of the model is 8.0 km × 15.6
km with the spatial interval dx = dz = 10 m. There are 77 shots horizontally
distributed on the surface of the model. We perform nt = 10000 time steps for each
shot with the temporal interval dt = 0.0005 s. In order to eliminate the diffraction
artifacts from long offset, we set the stacking aperture of 2.0 km around the shot.
Figure 10 shows the migrated image using conventional RTM without compensation
(Figure 10a) and Q-RTM from real data (Figure 10b), respectively. For a clearer
comparison, we display the zoomed in seismic images in Figure 11 corresponding to
the marked area from Figure 10. From Figures 10a and 10b, one can conclude that
the Q-compensated image using the proposed package exhibits sharper reflections and
more balanced amplitude.

(a) (b)

Figure 9: (a) Velocity and (b) Q models for field data.

Wang et al, 2019 20 CUDA-based Q-RTM

(a) (b)

Figure 10: Migrated images of the field data using (a) conventional RTM from vis-
coacoustic media without compensation, (b) Q-RTM.

(a) (b)

Figure 11: Zoom view of the images shown in the boxs in (a) Figure 10a and (b)
Figure 10b.

Wang et al, 2019 21 CUDA-based Q-RTM

DISCUSSION

An open-source code package cuQ-RTM presented in this chapter is designed for ef-
ficient and stable viscoacoustic imaging in attenuating media. The package utilizes
streamed CUFFT, CATRC scheme and adaptive stabilization to pertinently tackle
some well known problems in viscoacoustic imaging such as intensive computations,
large storage requirements and frequent disk I/O, and instability. Each of these
issues has been discussed in the literature, notably an efficient implementation of
3D FFTs across multiple-GPU systems (Nandapalan et al., 2012; Czechowski et al.,
2012), memory-saving reconstruction schemes (Anderson et al., 2012; Yang et al.,
2016; Wang et al., 2017b), and stabilized compensation strategies (Zhu et al., 2014;
Sun and Zhu, 2015; Wang et al., 2017a). The proposed package aims at utilizing a set
of the state-of-art strategies to achieve an efficient, storage-saving and stable Q-RTM.
Here we discuss the superior performance of the CATRC scheme and adaptive sta-
bilization over conventional methods. Unlike conventional effective boundary-saving
strategy using finite-differences (FD) (2Lc+ 1 grid points FD stencil), which requires
Lc layers of boundary wavefields at each time step, the proposed CATRC scheme
stores the outermost layers of boundary wavefields at each time step plus states at
the checkpoints and the last two time steps to the reconstructed source wavefield for
performing crosscorrelating imaging condition, without much loss of precision. Fig-
ure 12 shows source snapshots, reconstructed snapshots and their differences from the
Marmousi model at two propagation times. It demonstrates that the reconstructed
wavefields from CATRC are accurate enough for Q-RTM.

As this chapter mainly focuses on Q-RTM and its GPU implementation, we do not
pay much attention to the numerical simulation of spatially varying fractional power of
Laplacian operators. There are effective proposed schemes to handle spatial variable-
order fractional Laplacians (Sun et al., 2014; Li et al., 2016; Chen et al., 2016; Wang
et al., 2018a,c). Chen et al. (2016) proposed two efficient methods to calculate spatial
variable-order fractional Laplacians, i.e., Taylor-expansion approximation scheme and
Low-rank decomposition scheme. Wang et al. (2018a) extended the Taylor-expansion
approximation scheme to the viscoelastic case. All of these methods come at the
expense of computational efficiency. In this code package, the averaged strategy (Zhu
et al., 2014) is used to achieve a quick solution. Improving the accuracy of the code
package will be my future work.

Another critical issue is the constructed architecture and parallelism strategy of
the cuQ-RTM code package. The architecture of the cuQ-RTM code package has
been discussed in detail, which can be separated into four components: memory
manipulation, kernel, module and multi-level parallelism. Task-oriented kernels form
several fully functional modules, and these modules are further integrated into a com-
plete process of Q-RTM. The package contains 2D seismic imaging schemes on both
compensated and non-compensated frames with adaptive stabilization and low-pass
filtering strategies. We can execute Q-RTM in a flexible manner by choosing a series
of flags responsible for switching among different scenarios without any code modifica-
tions. In this sense, cuQ-RTM provides a general GPU-based framework to ensure a

Wang et al, 2019 22 CUDA-based Q-RTM

(a) (b)

(c) (d)

(e) (f)

Figure 12: Forward snapshots, reconstructed snapshots and their differences from
Marmousi model (see Figure 5) at two propagation times: (a)-(c) t = 0.82 s and
(d)-(f) t = 1.22 s.

Wang et al, 2019 23 CUDA-based Q-RTM

time- and memory-efficient implementation. The proposed cuQ-RTM is implemented
in an MLP manner to take advantages of all the CPUs and GPUs available, while
maintaining impressively good stability and flexibility. Whether for a single shot test
or a complete simulation, with only a single machine containing seven Nvidia GPU
cards, cuQ-RTM consistently provides speedup factors approaching or exceeding 50
times compared to conventional CPU-only implementations. My package is partic-
ularly well suited to Q-RTM where multiple shots are run on clusters with multiple
GPUs per node.

Shared memory is expected to be much faster than global memory, which enables
direct GPU-to-GPU transfers (Nandapalan et al., 2012; Jaros et al., 2012). Many
researchers proposed shared memory strategy for GPU parallel computing to im-
prove computational efficiency (Micikevicius, 2009; Liu et al., 2012; Jaros et al., 2012;
Nandapalan et al., 2012; Liu et al., 2013). In the cuQ-RTM code package, we adopt
streamed CUFFT to improve computational efficiency with no domain decomposition
and GPU-to-GPU transfers involved. For this reason we do not take shared memory
strategy into considersation, which might be considered as an improvment in a future
version.

Apart from outlining the architecture of the cuQ-RTM code package and underlin-
ing some program optimization schemes, we also provide speedup analysis and strong
scaling test on synthetic models. With only a single Nvidia GPU card, the presented
cuQ-RTM code package can be 50-80 times faster than the state-of-art distributed
CPU implementation running on a single CPU core. We also find that GPU-based
simulation on larger model scale tends to reach higher speedup ratio compared with
that of small-scale simulation. Objectively speaking, an abusolute speedup ratio
without considering the hardware that we used is not really a “fair” comparison. In
this study, we test the package on a GeForce GTX760 GPU and comapre it with
the conventional CPU implementation running on a single core of Intel Core i5-4460
CPU. If a more modern CPU system or a better GPU card is used, the speedup ratio
would be much lower or higher than that we claimed in this study. Regarding the
scaling test on multi-GPUs, the provided code package exhibits excellent scalability
and can be run with almost ideal code performance in part because communications
are almost entirely overlapped with calculations. My package’s architecture is de-
signed to mimic how a geophysicist writes down a seismic processing module such as
modeling, imaging, and inversion. By utilizing the streamed CUFFT, the most time-
consuming part of the pseudo-spectral simulation can be computed synchronously on
each device, which improves performance and lends itself naturally to the future im-
plementation of more complicated (Q-compensated) LSRTM and FWI (Yang et al.,
2015; Jaros et al., 2016a) on the GPU. Future work may also generalize to the 3D case
and incorporate more efficient reconstruction scheme, while a further investigation of
alternative or improved 2D and 3D FFTs techniques across multiple GPUs (Jaros
et al., 2012, 2016b) may also prove worthwhile.

Wang et al, 2019 24 CUDA-based Q-RTM

SUMMARY

In this chapter, we have presented an open-source code package cuQ-RTM, equipped
with a set of the state-of-art strategies such as streamed CUFFT, the CATRC scheme,
and adaptive stabilization, to achieve an efficient and robust Q-RTM. The archi-
tecture of the cuQ-RTM code package is composed of four components: memory
manipulation, kernel, module, and multi-level parallelism. Task-oriented kernels are
consolidated into several fully functional modules, which are further integrated into
the complete process of Q-RTM. The package is implemented in an MLP manner
to take advantages of all the CPUs and GPUs available, while maintaining impres-
sively good stability and flexibility. We have demonstrated the effectiveness and
applicability of the developed package by performing Q-RTM on both synthetic and
field data. Either synthetic or field migrated images with Q compensation exhibit
sharper reflections and more balanced amplitude. Furthermore, speedup tests via
viscoacoustic modeling on layered models indicates that the presented cuQ-RTM can
be 50-80 times faster, compared with conventional CPU-based implementation with
only a single GPU card. The strong scaling analysis of Q-RTM across multiple GPUs
demonstrates the excellent scalability of the package.

REFERENCES

Ammari, H., E. Bretin, J. Garnier, and A. Wahab, 2013, Time reversal algorithms in
viscoelastic media: European Journal of Applied Mathematics, 24, 565–600.

Anderson, J. E., L. Tan, and D. Wang, 2012, Time-reversal checkpointing methods
for RTM and FWI: Geophysics, 77, S93–S103.

Cao, D., and X. Yin, 2014, Equivalence relations of generalized rheological models
for viscoelastic seismic-wave modeling: Bulletin of the Seismological Society of
America, 104, 260–268.

Carcione, J. M., 2007, Wave fields in real media: Wave propagation in anisotropic,
anelastic, porous and electromagnetic media: Elsevier, 38.

——–, 2010, A generalization of the fourier pseudospectral method: Geophysics, 75,
A53–A56.

Causse, E., and B. Ursin, 2000, Viscoacoustic reverse-time migration: Journal of
Seismic Exploration, 9, 165–183.

Chen, H., H. Zhou, Q. Li, and Y. Wang, 2016, Two efficient modeling schemes for
fractional Laplacian viscoacoustic wave equation: Geophysics, 81, T233–T249.

Czechowski, K., C. Battaglino, C. McClanahan, K. Iyer, P.-K. Yeung, and R. Vuduc,
2012, On the communication complexity of 3D FFTs and its implications for exas-
cale: Proceedings of the 26th ACM international conference on Supercomputing,
ACM, 205–214.

Dai, N., and G. F. West, 1994, Inverse Q migration: SEG expanded abstracts: 64th
Annual international meeting, 1418–1421.

Farquhar, M. E., T. J. Moroney, Q. Yang, and I. W. Turner, 2016, GPU acceler-
ated algorithms for computing matrix function vector products with applications

Wang et al, 2019 25 CUDA-based Q-RTM

to exponential integrators and fractional diffusion: SIAM Journal on Scientific
Computing, 38, C127–C149.

Foltinek, D., D. Eaton, J. Mahovsky, P. Moghaddam, and R. McGarry, 2009,
Industrial-scale reverse time migration on GPU hardware: SEG expanded ab-
stracts: 79th Annual international meeting, Society of Exploration Geophysicists,
2789–2793.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar: Open-
source software project for multidimensional data analysis and reproducible com-
putational experiments: Journal of Open Research Software, 1, e8.

Futterman, W. I., 1962, Dispersive body waves: Journal of Geophysical research, 67,
5279–5291.

Griewank, A., and A. Walther, 2000, Algorithm 799: revolve: an implementation
of checkpointing for the reverse or adjoint mode of computational differentiation:
Acm Transactions on Mathematical Software, 26, 19–45.

Guide, D., 2013, CUDA C programming guide: NVIDIA, July.
Guo, P., G. A. McMechan, and H. Guan, 2016, Comparison of two viscoacoustic

propagators for Q-compensated reverse time migration: Geophysics, 81, S281–
S297.

Irving, J. D., and R. J. Knight, 2003, Removal of wavelet dispersion from ground-
penetrating radar data: Geophysics, 68, 960–970.

Jaros, J., A. P. Rendell, and B. E. Treeby, 2016a, Full-wave nonlinear ultrasound
simulation on distributed clusters with applications in high-intensity focused ultra-
sound: The International Journal of High Performance Computing Applications,
30, 137–155.

Jaros, J., B. E. Treeby, and A. P. Rendell, 2012, Use of multiple GPUs on shared
memory multiprocessors for ultrasound propagation simulations: Proceedings of
the Tenth Australasian Symposium on Parallel and Distributed Computing-Volume
127, Australian Computer Society, Inc., 43–52.

Jaros, J., F. Vaverka, and B. E. Treeby, 2016b, Spectral domain decomposition using
local Fourier basis: Application to ultrasound simulation on a cluster of GPUs:
Supercomputing Frontiers and Innovations, 3, 40–55.

Kalimeris, K., and O. Scherzer, 2012, Photoacoustic imaging in attenuating acoustic
media based on strongly causal models: Mathematical Methods in the Applied
Sciences, 36, 2254–2264.

Kjartansson, E., 1979, Constant-Q wave propagation and attenuation: Journal of
Geophysical Research: Solid Earth, 84, 4737–4748.

Kolsky, H., 1956, Lxxi. the propagation of stress pulses in viscoelastic solids: Philo-
sophical magazine, 1, 693–710.

Li, Q., H. Zhou, Q. Zhang, H. Chen, and S. Sheng, 2016, Efficient reverse time
migration based on fractional Laplacian viscoacoustic wave equation: Geophysical
Journal International, 204, 488–504.

Liao, Z., K. Huang, B. Yang, and Y. Yuan, 1984, A transmitting boundary for tran-
sient wave analyses: Science in China Series A-Mathematics, Physics, Astronomy
& Technological Science, 27, 1063–1076.

Liu, G., Y. Liu, L. Ren, and X. Meng, 2013, 3D seismic reverse time migration on

Wang et al, 2019 26 CUDA-based Q-RTM

GPGPU: Computers & Geosciences, 59, 17–23.
Liu, H. W., H. Liu, X. L. Tong, and Q. Liu, 2012, A Fourier integral algorithm and

its GPU/CPU collaborative implementation for one-way wave equation migration:
Computers & Geosciences, 45, 139–148.

Mainardi, F., 2010, Fractional calculus and waves in linear viscoelasticity: an intro-
duction to mathematical models: World Scientific.

McDonal, F., F. Angona, R. Mills, R. Sengbush, R. Van Nostrand, and J. White,
1958, Attenuation of shear and compressional waves in Pierre shale: Geophysics,
23, 421–439.

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: Pro-
ceedings of 2nd workshop on general purpose processing on graphics processing
units, ACM, 79–84.

Mittet, R., 2007, A simple design procedure for depth extrapolation operators that
compensate for absorption and dispersion: Geophysics, 72, S105–S112.

Mittet, R., R. Sollie, and K. Hokstad, 1995, Prestack depth migration with compen-
sation for absorption and dispersion: Geophysics, 60, 1485–1494.

Moczo, P., and J. Kristek, 2005, On the rheological models used for time-domain
methods of seismic wave propagation: Geophysical Research Letters, 32.

Nandapalan, N., J. Jaros, A. P. Rendell, and B. Treeby, 2012, Implementation of
3D FFTs across multiple GPUs in shared memory environments: Parallel and
Distributed Computing, Applications and Technologies (PDCAT), 2012 13th In-
ternational Conference on, IEEE, 167–172.

Näsholm, S., and S. Holm, 2013, On a fractional zener elastic wave equation: Frac-
tional Calculus and Applied Analysis, 16, 26–50.

Rossikhin, Y. A., and M. V. Shitikova, 2010, Application of fractional calculus for
dynamic problems of solid mechanics: novel trends and recent results: Applied
Mechanics Reviews, 63, 010801.

Sava, P., and I. Vlad, 2008, Numeric implementation of wave-equation migration
velocity analysis operators: Geophysics, 73, VE145–VE159.

Shen, Y., and T. Zhu, 2015, Image-based Q tomography using reverse time Q mi-
gration: SEG expanded abstracts: 85th Annual international meeting, Society of
Exploration Geophysicists, 3694–3698.

Shin, J., W. Ha, H. Jun, D.-J. Min, and C. Shin, 2014, 3D Laplace-domain full
waveform inversion using a single GPU card: Computers & Geosciences, 67, 1–13.

Strick, E., 1967, The determination of Q, dynamic viscosity and transient creep curves
from wave propagation measurements: Geophysical Journal International, 13, 197–
218.

Sun, J., S. Fomel, T. Zhu, and J. Hu, 2016, Q-compensated least-squares reverse time
migration using low-rank one-step wave extrapolation: Geophysics, 81, S271–S279.

Sun, J., and T. Zhu, 2015, Stable attenuation compensation in reverse-time migra-
tion, in SEG Technical Program Expanded Abstracts 2015: Society of Exploration
Geophysicists, 3942–3947.

Sun, J., T. Zhu, and S. Fomel, 2014, Viscoacoustic modeling and imaging using low-
rank approximation: Geophysics, 80, A103–A108.

Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics,

Wang et al, 2019 27 CUDA-based Q-RTM

72, 213–221.
Szabo, T. L., 1994, Time domain wave equations for lossy media obeying a frequency

power law: The Journal of the Acoustical Society of America, 96, 491–500.
——–, 1995, Causal theories and data for acoustic attenuation obeying a frequency

power law: The Journal of the Acoustical Society of America, 97, 14–24.
Tan, S., and L. Huang, 2014, Reducing the computer memory requirement for 3D

reverse-time migration with a boundary-wavefield extrapolation method: Geo-
physics, 79, S185–S194.

Tan, W., L. Cao, and L. Fong, 2016, Faster and cheaper: Parallelizing large-scale
matrix factorization on GPUs: Proceedings of the 25th ACM International Sym-
posium on High-Performance Parallel and Distributed Computing, ACM, 219–230.

Treeby, B. E., E. Z. Zhang, and B. T. Cox, 2010, Photoacoustic tomography in
absorbing acoustic media using time reversal: Inverse Problems, 26, 115003–20.

Wang, N., H. Zhou, H. Chen, M. Xia, S. Wang, J. Fang, and P. Sun, 2018a, A
constant fractional-order viscoelastic wave equation and its numerical simulation
scheme: Geophysics, 83, T39–T48.

Wang, Y., 2002, A stable and efficient approach of inverse Q filtering: Geophysics,
67, 657–663.

——–, 2006, Inverse Q-filter for seismic resolution enhancement: Geophysics, 71,
V51–V60.

——–, 2009, Seismic inverse Q filtering: John Wiley & Sons.
Wang, Y., and J. Guo, 2004, Seismic migration with inverse Q filtering: Geophysical

Research Letters, 31, 163–183.
Wang, Y., X. Ma, H. Zhou, and Y. Chen, 2018b, L1−2 minimization for exact and

stable seismic attenuation compensation: Geophysical Journal International, 213,
1629–1646.

Wang, Y., H. Zhou, H. Chen, and Y. Chen, 2018c, Adaptive stabilization for Q-
compensated reverse time migration: Geophysics, 83, S15–S32.

Wang, Y., H. Zhou, Q. Li, X. Zhao, X. Zhao, and Y. An, 2017a, Regularized Q-RTM
using time-variant filtering in the k-space: Presented at the 79th EAGE Conference
and Exhibition 2017, European Association of Geoscientists and engineers.

Wang, Y., H. Zhou, Q. Zhang, X. Zhao, Z. Zhou, and Y. An, 2017b, Wavefield
reconstruction in attenuating media using time-reversal checkpointing and k-space
filtering: Presented at the 79th EAGE Conference and Exhibition 2017, European
Association of Geoscientists and engineers.

Wang, Y., H. Zhou, X. Zhao, M. Xia, and X. Cai, 2017c, The k-space Greens functions
for decoupled constant-Q wave equation and its adjoint equation: Presented at the
79th EAGE Conference and Exhibition 2017, European Association of Geoscientists
and engineers.

Yang, P., R. Brossier, L. Métivier, and J. Virieux, 2016, Wavefield reconstruction in
attenuating media: A checkpointing-assisted reverse-forward simulation method:
Geophysics, 81, R349–R362.

Yang, P., J. Gao, and B. Wang, 2014, RTM using effective boundary saving: A
staggered grid GPU implementation: Computers & Geosciences, 68, 64–72.

——–, 2015, A graphics processing unit implementation of time-domain full-waveform

Wang et al, 2019 28 CUDA-based Q-RTM

inversion: Geophysics, 80, F31–F39.
Zhang, G., and J. Gao, 2014, Time domain viscoelastic forward modeling on GPU:

SEG expanded abstracts: 84th Annual international meeting, Society of Explo-
ration Geophysicists, 3530–3535.

Zhang, J., S. Wang, and Z. Yao, 2009, Accelerating 3D Fourier migration with graph-
ics processing units: Geophysics, 74, WCA129–WCA139.

Zhang, J., J. Wu, and X. Li, 2012, Compensation for absorption and dispersion in
prestack migration: An effective Q approach: Geophysics, 78, S1–S14.

Zhang, Y., P. Zhang, and H. Zhang, 2010, Compensating for visco-acoustic effects
in reverse-time migration: SEG expanded abstracts: 80th Annual international
meeting, 3160–3164.

Zhao, X., H. Zhou, Q. Li, and Y. Wang, 2017, A method to avoid the snapshots wave-
fields storage in reverse time migration: Presented at the 79th EAGE Conference
and Exhibition, European Association of Geoscientists and engineers.

Zhu, T., and J. M. Harris, 2014, Modeling acoustic wave propagation in heterogeneous
attenuating media using decoupled fractional laplacians: Geophysics, 79, T105–
T116.

Zhu, T., J. M. Harris, and B. Biondi, 2014, Q-compensated reverse-time migration:
Geophysics, 79, S77–S87.

